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Abstract

Although autonomous mobile robots have become more commonplace, methods for

them to navigate in the real-world are not yet perfected. This survey describes two

heuristic-based approaches, metaheuristics and cognitive models, that have been

used in this domain under separate but concurrent development. Metaheuristics are

broadly-applicable, heuristic-based algorithms inspired by natural processes. They

use one or more heuristic strategies to search for solutions. Alternatively, studies

have shown that people adaptively use one or more strategies during navigation.

Cognitive models are used to computationally encode human behaviors. This paper

details both approaches, reviews the literature on their application to autonomous

robot navigation, and discusses their advantages and disadvantages. Finally, to take

advantage of algorithmic efficiency and human behaviors, the conclusion proposes

the integration of these two approaches.
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1. Introduction

Robots are increasingly prevalent in modern society, where they will eventually be ex-

pected to complete tasks autonomously. In particular, mobile robots must navigate

in many settings, including social assistance, manufacturing, delivery, exploration,

and search and rescue. Planning an optimal path in a non-trivial environment, how-

ever, is NP-hard. This paper reviews two significant areas of research in autonomous

robot navigation: metaheuristics (high level heuristic techniques) and cognitive mod-

els (computational simulations of human behavior). Studies have shown that people

use multiple heuristics and change their strategy across navigational tasks and within

tasks. Much the way people adapt their strategy based on their circumstances, meta-

heuristics seek to use a heuristic strategy to solve problems. Although heuristic

methods find solutions that may merely be good enough, for autonomous robot nav-

igation such solutions must suffice. Both approaches provide viable solutions to the

problem of autonomous robot navigation but no approach has emerged as uniformly

superior.

This chapter formalizes artificial intelligence problems and their solutions. It be-

gins with fundamental concepts and describes problems in the context of autonomous

robot navigation. It then discusses challenges in autonomous robot navigation. Fi-

nally, it describes heuristics and metaheuristics.

1.1 Problem Formulation

In Artificial Intelligence (AI), an agent perceives its environment through sensors and

acts upon that environment with actuators (Russell and Norvig, 2009). An embodied

agent has a physical body that interacts with the environment through that body. A

robot is an artificial, embodied, mechanical agent. Examples of robot sensors include

1



cameras and lasers; an example of a robot actuator is a motor. A mobile robot can

move through its environment. At any instant, a mobile robot has a pose 〈x, y, θ〉 in

its environment, where 〈x, y〉 is its position and θ is its orientation with respect to

some coordinate system. An autonomous robot acts without human intervention.

An agent addresses a problem, defined by the tuple P = 〈S, I, A,G〉 where

• S is a set of states that represent an instance of the environment. Each state

s ∈ S is represented as a set of features

• I ⊆ S is a set of initial states

• A is a set of possible actions from which the agent can select

• G(s) is a Boolean goal test

An agent uses its actuators to perform an action a ∈ A that is intended to take

the agent from state si to the next state sj. If an action fails or is an intentional

pause, then si may be the same as sj. A problem class is a set of problems that share

some characteristic. A problem domain is a set of related problem classes.

Autonomous robot navigation is a problem domain in which autonomous mobile

robots move through an environment from one location to another. This paper takes

autonomous robot navigation as a running example of an AI problem. Research on

autonomous robot navigation is motivated by the deployment of robots in nearly

every aspect of society. Robots must now travel and complete tasks independently

in complex environments, such as factory and warehouse floors, offices, and homes,

often in the company of people, other robots, and obstacles. The states s = 〈x, y, θ〉

in autonomous robot navigation represent the possible poses of the robot in its envi-

ronment. An initial state is the pose at which the robot begins, such as the position

of a charging station or the entrance to a building, and the direction the robot faces
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in that position. Each action in A is either intended to change the robot’s pose (e.g.,

a forward movement or a turn) or is an intentional pause which does not change the

pose. Finally, the goal test G returns true only if the robot’s current position is the

target’s location.

Given a problem P = 〈S, I, A,G〉, a path p is a finite ordered sequence of inter-

leaved states and actions 〈s1, a1, s2, a2, s3, . . . , sr−1, ar−1, sr〉. The agent attempts to

find a solution, a finite path p = 〈s1, a1, s2, a2, s3, . . . , sr−1, ar−1, sr〉 from an initial

state to a goal state, that is, s1 ∈ I and G(sr) = True. A plan is a path whose action

sequence is selected and can be proved to be a solution before it is executed. Actuator

error occurs when actuators do not execute an action exactly as intended. As a result

of actuator error, although an agent intends to follow a plan, it may deviate so that

the path actually travelled differs from the plan.

The search space H for a problem P is the set of all paths that start at an initial

state. Many paths in the search space do not reach a goal state. For example, in

autonomous robot navigation, a path p is a sequence of poses interleaved with actions

(e.g., s1 = initial pose, a1 = move forward two feet, s2 = next pose, a2 = turn left

90◦, s3 = next pose, a3 = move forward five feet). A solution for the robot is a path

that starts at an initial location and ends at a target. The search space could contain

infinitely many paths that the robot could take from an initial pose.

A metric defines the step cost c to take an action a in state s. The step cost may be

uniform across all state-action pairs, or may be defined in the context of the problem

class. Examples of metrics for a mobile robot include elapsed time and battery usage.

The step cost c of an action in autonomous robot navigation can be measured as the

amount of energy consumed, the time taken, or the distance traveled.

The path cost C(p) of path p is the sum C(p) =
∑

i ci of the step costs of all the

actions along p. For example, the path cost C(p) in autonomous robot navigation
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could measure the total battery usage or the distance traveled for the entire path.

An optimal solution o is a solution in the search space with minimum path cost:

o = arg min
p∈H

C(p). An optimal solution in autonomous robot navigation is defined by

its metric, for example, as the fastest or the shortest path from the initial position

to the target. A satisfactory solution is a solution that is good enough with respect

to a domain-specific criterion, and thus is less likely to require prohibitive compu-

tational resources (Poole and Mackworth, 2010). Satisfactory solutions are usually

sub-optimal. A satisfactory solution in autonomous robot navigation would be a

sufficiently short path or a sufficiently fast one.

Search is a process that explores a problem’s search space to find a solution. In

an optimization problem, search seeks an optimal solution. For NP-hard problems

with sufficiently large search spaces, however, it is often impractical or impossible to

compute an optimal solution. A particular challenge to heuristics for optimization

is premature convergence, which is when the search stops at a sub-optimal solution.

Examples of optimization problems in graph search include the traveling salesperson

problem (Dantzig et al., 1954) and the minimum spanning tree problem (Graham and

Hell, 1985).

Path planning for autonomous robot navigation is the search for a plan that

minimizes travel time, travel distance, or resource consumption (Fong et al., 2015).

Because path planning is NP-hard, the discovery of optimal paths is intractable in

any non-trivial environment (Canny, 1988). Thus, for many important autonomous

robot navigation tasks that involve path planning, a satisfactory solution must suffice.

The next section discusses additional challenges in autonomous robot navigation.
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1.2 Challenges in Autonomous Robot Navigation

Autonomous robot navigation faces several challenges beyond optimal path planning:

localization, mapping, obstacle avoidance, and motion control. Localization requires

an autonomous robot to detect its current pose. When a robot cannot localize ac-

curately in its environment, it is lost. Mapping requires the robot to construct a

map of its environment if it is unknown. Obstacle avoidance requires the robot to

move through its environment without collisions. Motion control requires the robot

to manipulate its actuators to perform intended actions despite actuator error.

Rather than one method to address all these challenges, most approaches tackle

each of them separately. An exception to this is simultaneous localization and map-

ping (SLAM), a methodology in which the robot constructs a map of an unknown

environment and simultaneously keeps track of its position within that map. Popular

SLAM approaches use Bayesian probabilistic techniques, such as a Rao-Blackwellized

particle filter or extended Kalman filter, to construct a probabilistic representation of

the environment (Durrant-Whyte and Bailey, 2006). After the robot has mapped its

environment (whether through SLAM or another method), a graph search algorithm

is typically used for path planning. Examples of graph search algorithms include

depth-first search, breadth-first search, Dijkstra’s algorithm, A* search (Korf, 2014),

D* search (Stentz, 1994), D* Lite (Koenig and Likhachev, 2002), LPA* (Koenig et al.,

2004), and MPGAA* (Hernández et al., 2015).

The state-of-the-art for autonomous robot navigation is probabilistic SLAM for

mapping and localization, and A* search for path planning. A* search, however, faces

several situations in which other methods may be better. A* is only viable if a map

of the environment is available, but the robot may not have time to create a map.

Even if a map is available, in sufficiently complex problem domains A* search may
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not find a solution in a reasonable amount of time. Although A* search provides

optimal solutions, other methods may provide satisfactory solutions faster than A*,

and, as previously described, satisfactory solutions must suffice in many autonomous

robot navigation applications. Finally, A* search has a problem-specific component

(its admissible heuristic) that must be carefully selected to ensure the optimality of

the search but this component is not always easily obtained. Other approaches avoid

this issue with general problem-independent strategies.

Additionally, although probabilistic SLAM with graph search is commonly used

for path planning, there is no conclusive evidence that this approach is superior to

other approaches because autonomous robot navigation lacks a standard testbed and

standard performance metrics. This makes it difficult to compare results from differ-

ent systems, especially when they make different assumptions about the environment.

While path cost, computation time, and algorithmic complexity are appropriate per-

formance metrics for path planning, no one metric is consistently used in the litera-

ture. As a result, researchers have proposed many alternatives to SLAM with graph

search, including the approaches discussed in this paper.

Other challenges for autonomous robot navigation stem from the nature of the

robot’s environment. An agent’s environment may be categorized by its observability.

In a fully observable environment an agent’s sensors view the complete state of the

environment at each point in time. An environment is partially observable if parts

of the environment are not detected by the sensors or if the sensors are noisy or

inaccurate. Finally, an unobservable environment cannot be perceived by the agent.

Another way to characterize an environment is as single agent or multiagent.

In multiagent environments, an agent must consider whether the other agents are

competitive (work against each other), cooperative (work together), or neither (work

independently). Path planning for multiple robots presents additional challenges,
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such as whether to minimize individual path length versus total path length, and how

to prevent collisions between robots. Another issue for multi-robot path planning is

whether to consider each robot’s path as a separate path planning problem or as one

large optimization problem. An algorithm that considers the paths separately may

be faster but may also have to address collisions between robots afterwards with path

corrections or real-time obstacle avoidance.

A static environment does not change while an agent is deciding which action to

take whereas a dynamic environment changes over time. In a dynamic environment,

obstacles, other agents, and the structure of the environment itself can all move or

change. Path planning in a dynamic environment is more difficult because the agent

has to contend with changes in the environment that may make a once-satisfactory

plan infeasible. A continuous environment has an infinite number of states; a dis-

crete environment has a finite number of states. To create a discrete environment,

the continuous dimensions of an environment can be discretized into evenly spaced

intervals. For example, the states s = 〈x, y, θ〉 in autonomous robot navigation are

infinite since (x, y) ∈ R2 and θ ∈ [0, 360], but these can be discretized by binning the

values to integers in a limited range. A discrete environment is typically represented

as a two-dimensional grid in Cartesian coordinates.

A real-world environment is typically partially observable or unobservable, mul-

tiagent, dynamic, and continuous. Path planning in a partially observable or unob-

servable environment is difficult because the positions of obstacles are unknown to

the agent. Nonetheless, in the real world the robot has no choice but to contend with

these difficulties. Moveover, a real-world environment requires the use of physical

robots which may be expensive, complex, and present many hardware challenges. As

a result, autonomous robot systems are often tested in a simulated environment, as

a simplified model on a computer, where a system can be tested many times under
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identical conditions. A simulated environment allows researchers to select the char-

acteristics of the environment to limit the complexity of the problem that their robot

faces.

While most applications use robots on the ground in indoor and outdoor envi-

ronments, there is also recent research on navigation for airborne and underwater

robots. Those environments present additional challenges: the robot must contend

with wind streams or underwater currents and must operate in three-dimensional

space. An unmanned aerial vehicle (UAV) is an aerial robot that may operate au-

tonomously. Originally developed for military applications, UAV systems usually

also consider other hostile agents and such threats as radar and missiles. Underwater

environments are typically unmapped and sensors are limited.

System design for autonomous robot navigation must make assumptions about the

robot’s environment: real-world or simulated, fully observable, partially observable,

or unobservable, single agent or multiagent, static or dynamic, continuous or discrete,

and on the ground, airborne or underwater. These choices determine the complexity

of the environment and the difficulty of the path planning problem. This again makes

comparisons among results developed for different types of environments difficult. Ap-

proaches discussed in this paper are for simulated grid environments with exceptions

appropriately noted. The next section introduces heuristics and metaheuristics as

ways to solve difficult problems like path planning.

1.3 Heuristics and Metaheuristics

A heuristic is an efficient strategy that can often solve a problem. Heuristic techniques

may find satisfactory solutions when naive and brute-force approaches are too slow

or fail to find an optimal solution (Pearl, 1984). In autonomous robot navigation, it

is computationally expensive to find the shortest path to the target. Heuristics, such
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as Euclidean distance and Manhattan distance, are used to estimate the distance to

the target instead. Heuristics, however, are typically specific to a problem domain or

problem class.

A metaheuristic is a broadly applicable technique that uses a heuristic strategy

to obtain satisfactory solutions (Glover and Kochenberger, 2003). Examples of meta-

heuristics include ant colony optimization, genetic and evolutionary algorithms, sim-

ulated annealing, and tabu search. Surveys have reviewed the use of metaheuristics

for optimization problems (Bianchi et al., 2009; Boussäıd et al., 2013). Metaheuristics

are typically used when only incomplete or imperfect information is available, there

is limited computational resources, or the problem is NP-hard. Metaheuristics are

not problem-domain specific; they seek satisfactory solutions through efficient search.

Many metaheuristics are tailored to avoid premature convergence.

A hybrid metaheuristic combines multiple heuristics and/or metaheuristics with

other approaches to optimization problems to produce a better overall solution (Blum

et al., 2011). These other approaches include dynamic programming, machine learn-

ing, constraint programming, tree search, and problem relaxation. Both metaheuris-

tics and hybrid metaheuristics have been used to seek or improve solutions for path

planning.

The remainder of this paper is organized as follows. Chapter 2 provides back-

ground on metaheuristics and reviews previous approaches in the use of single-solution

metaheurstics for path planning. Chapter 3 describes population-based metaheuris-

tics and hybrid metaheuristics and approaches for their use in path planning. Chapter

4 examines previous research in cognitive science on human and autonomous robot

navigation. Chapter 5 concludes the paper and foreshadows future work.
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2. Single-solution Metaheuristics for Path Planning

Metaheuristics have been used in robotics for path finding, navigation, and behavior

optimization (Blum and Roli, 2003). This paper reviews the breadth of metaheuristics

that have been used for autonomous robot navigation, whereas previous surveys only

examined the use of specific metaheuristics for autonomous robot navigation (Manikas

et al., 2007; Meyer et al., 1998; Bongard, 2013) or examined the use of metaheuristics

more broadly across all of robotics (Fong et al., 2015).

Metaheuristic algorithms can be classified along two dimensions: the locality of

the search and the number of alternatives considered at each iteration (Talbi, 2009).

Local search explores the search space in the vicinity of an alternative, while global

search has the ability to explore the entire search space. In search for an optimal

solution, local search may become trapped in local optima, while global search may

be impractical or impossible. Although both methods can find satisfactory solutions,

local search may use fewer computational resources.

Throughout this paper, a candidate is a path found during search. A candidate’s

neighbor has a single action changed in, added to, or removed from the candidate’s se-

quence of actions, with appropriate changes to the neighbor’s states. A single-solution

method maintains and improves one candidate at a time as it explores the search

space. A population-based method maintains and improves a set of candidates as it

explores the search space. This distinction between single-solution and population-

based methods is often used to categorize metaheuristic algorithms (Blum and Roli,

2003).

The trade-off between exploration and exploitation is a fundamental challenge for

search in AI problems. Algorithms balance exploration of unseen portions of the

search space against exploitation of the knowledge collected in the search thus far to
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focus the search near the current best candidate(s). Many methods and metaheuris-

tics seek to optimize this trade-off to speed search.

The remainder of this chapter begins with background on basic search methods

that are the building blocks of many metaheurstics. Pseudocode for these search

methods was adapted from Luke (2013). The subsequent section discusses single-

solution metaheuristics in the context of autonomous robot navigation.

2.1 Background

Most metaheuristics for robotics use some aspects of random search and hill climbing

in their basic mechanisms (Fong et al., 2015). The consideration of multiple candidate

solutions and the use of random restarts are also common. These four methods are

discussed below.

Random search is a single-solution, global search method that repeatedly selects

and examines a random candidate and stores a single best candidate as it searches.

The benefit of random search is that it eventually explores the entire search space

and so it avoids local optima. It may not, however, find an optimal solution in a

reasonable amount of time.

Algorithm 1: Random search

Best← an initial random candidate
repeat until Best is a satisfactory solution or computation time is exhausted

S ← a random candidate
if Quality(S) > Quality(Best) then

Best← S
return Best

Pseudocode for random search appears in Algorithm 1. Random search begins

with an initial random candidate that it designates as the best candidate Best. It

then repeatedly selects another random candidate. The Quality function computes
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the candidate’s quality based on domain-specific criteria. If the randomly selected

candidate has a higher Quality value than Best, the new candidate becomes Best.

This continues until Best is a satisfactory solution or the allotted computation time

is exhausted. The final Best is returned. After an exhaustive search, Best is an

optimal solution; otherwise random search may provide a satisfactory solution.

Random search can be used to find a solution for path planning. In an infinitely

large search space, however, it is not possible to guarantee an optimal solution; a sat-

isfactory solution must do. Random search does not use any strategies as it searches

and is thus a naive method when used alone.

Hill climbing is a single-solution, local search method that seeks to continually im-

prove a candidate. Whereas random search focuses only on exploration, hill climbing

focuses only on exploitation. Algorithm 2 provides the pseudocode for hill climbing.

Rather than select a new candidate at random, it selects a new candidate S that

is an extension of the current best candidate Best. The Extend function randomly

selects a neighbor of Best. Then the Quality function is used to compare S and

Best, and the candidate with higher quality is retained. This continues until Best is

a satisfactory solution or the allotted computation time is exhausted. Hill climbing

continually extends a single candidate, whereas random search explores candidates

throughout the search space.

Algorithm 2: Hill-climbing search

Best← an initial random candidate
repeat until Best is a satisfactory solution or computation time is exhausted

S ← Extend(Best)
if Quality(S) > Quality(Best) then

Best← S
return Best
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Hill climbing can also be used to find a satisfactory solution in path planning. Hill

climbing’s heuristic always goes towards a solution with higher quality. This strategy

is naive because it can easily become trapped in local optima. For problems with

a smooth convex search space, hill climbing will always eventually find an optimal

solution, however, such a space is rarely the case. Two methods address this issue:

steepest ascent and random restart. Both seek to strike a better balance between

exploitation and exploration.

Steepest ascent hill climbing modifies hill climbing so that it considers multiple

candidates and selects the one candidate with the largest improvement in quality.

Pseudocode for steepest ascent hill climbing appears in Algorithm 3. Instead of one

extension of Best, it considers n random extensions of Best at each iteration and

keeps the candidate of greatest quality among the n extensions and Best. Although

this method is still largely focused on exploitation, it explores more of the search

space around the candidate.

Algorithm 3: Steepest ascent hill-climbing search

n← number of extensions to consider on each iteration
Best← an initial random candidate
repeat until Best is a satisfactory solution or computation time is exhausted

S ← Best
for n times do

R← Extend(Best)
if Quality(R) > Quality(S) then

S ← R

end
if Quality(S) > Quality(Best) then

Best← S
return Best

Hill climbing with random restarts modifies hill climbing so that it becomes a

global-search method. Pseudocode for hill climbing with random restarts appears in

Algorithm 4. In this method, hill climbing begins from a random candidate for a
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randomly selected amount of time t. When that time is up, a new random candidate

and a new amount of time are selected and hill climbing resumes. The candidate with

the highest quality is retained. The process repeats until either a satisfactory solution

is found or computation time is exhausted. Hill climbing with random restarts takes

advantage of hill climbing while it also provides a way to escape from local optima.

This search method balances exploration and exploitation more so than the previous

methods but naively, since the restarts begin at random.

Algorithm 4: Hill-climbing search with random restarts

T← distribution of possible time intervals
S← an initial random candidate
Best← S
repeat until
Best is a satisfactory solution or overall computation time is exhausted

t← random time chosen from T
repeat until Computation time t is exhausted

R← Extend(S)
if Quality(R) > Quality(S) then

S ← R

if Quality(S) > Quality(Best) then
Best← S

S← a random candidate
return Best

Although random search, hill climbing, steepest ascent, and random restarts have

all inspired and influenced metaheuristic techniques, they often suffer from premature

convergence. The next section reviews single-solution metaheuristics and their use

in autonomous robot navigation. These metaheuristics use a heuristic strategy to

balance exploration and exploitation in a more deliberate and thoughtful way.
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2.2 Simulated Annealing and Tabu Search

Simulated annealing is a single-solution, local-search metaheuristic (Kirkpatrick et al.,

1983; Černỳ, 1985). It was inspired by the annealing process in metallurgy in which

a heated material is slowly cooled. Simulated annealing seeks to balance the trade

off between exploration of new areas of the search space and exploitation of the best

candidate found thus far. It employs a mechanism similar to hill climbing but allows

for the occasional selection of candidates with lower quality. To do so, a temperature

controls the degree to which the lower quality candidates are selected. In this way,

the search is biased towards exploration early in search, and then slowly shifts its bias

towards exploitation as search progresses.

Algorithm 5: Simulated annealing

t← initial temperature value
Best← an initial random candidate
repeat until
Best is a satisfactory solution or overall computation time is exhausted or t ≤
0
S ← Extend(Best)
a← a random number in [0, 1]

if Quality(S) > Quality(Best) or a < e
Quality(S)−Quality(Best)

t then
Best← S

Update t
return Best

Pseudocode for simulated annealing appears in Algorithm 5. At each iteration, if

the Quality value of the extended candidate S is greater than the Quality value of

the candidate Best then S always replaces Best. Otherwise, a temperature variable

t governs the probability e
Quality(S)−Quality(Best)

t that S replaces Best even though S

has a lower Quality value. This probability is always between 0 and 1 because it is

used only when Quality(S) ≤ Quality(Best). Because the value of t decreases as the
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algorithm explores the search space, the probability that a lower quality candidate is

selected decreases over time.

Tabu search is a single-solution, local-search metaheuristic that also builds upon

hill climbing and allows for the selection of lower quality candidates at each itera-

tion (Glover, 1989, 1990). Unlike simulated annealing, however, tabu search tem-

porarily forbids a return to recently visited candidates. Tabu search intentionally

limits exploitation in an effort to increase exploration. Algorithm 6 shows the pseu-

docode for tabu search (adapted from Glover and Kochenberger (2003)).

Tabu search maintains an intially empty tabu list Tabu of temporarily forbidden

candidates. The algorithm begins with Best and S, an initial random candidate. On

each iteration, tabu search considers up to n neighbors of S. Among the neighbors

that are not in Tabu, the candidate with the highest quality is saved as bestNeighbor.

If all the neighbors of S are in Tabu then candidates are removed from Tabu until a

neighbor of S is no longer in Tabu. (A method such as this that allows search to return

to a previously visited candidate in Tabu is called an aspiration criterion.) Next, if

the quality of bestNeighbor is greater than the quality of Best, Best is replaced with

bestNeighbor, and bestNeighbor is inserted into Tabu to prevent an immediate return

to it. If the size of Tabu is greater than a user-specified maximum tabu list length

l then candidates are removed from Tabu until the size is less than l. Typically,

candidates are removed on a first in, first out basis. This allows a once-forbidden

candidate to be reconsidered later. Finally, S is replaced with bestNeighbor so that,

on the next iteration, the neighbors of bestNeighbor are considered. This process is

repeated until Best is a satisfactory solution or computation time is exhausted.

Tabu search can be modified to include a tabu tenure factor that allows candidates

to be removed from the Tabu list after a certain amount of time has elapsed. The

tabu tenure is usually chosen randomly. Diversification, a focus on a portion of the
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search space that shows promise, and intensification, a focus on previously unexplored

areas of the search space, are other techniques that have been used in tabu search to

improve performance.

Algorithm 6: Tabu search

l← desired maximum tabu list length
Tabu← [ ] the tabu list
Best← an initial random candidate
S← Best
n← number of neighbors to consider at each iteration
repeat until Best is a satisfactory solution or overall computation time is
exhausted

Neighbors← [ ]
C← [ ]
Neighbors←
set of distinct candidates produced by n executions of Extend(S)

C← Neighbors \ Tabu
if C 6= ∅ then

bestNeighbor← candidate ∈ C with maximal Quality
else

// Else if all neighbors of S are in the Tabu list, remove candidates
from Tabu until a neighbor is available, allowing the algorithm to
return to a previously visited candidate
repeat until bestNeighbor has a candidate

Tabu← Tabu \ {c} where c ∈ Tabu
if c ∈ Neighbors then

bestNeighbor← c

end
if Quality(bestNeighbor) > Quality(Best) then

Best← bestNeighbor
Insert bestNeighbor into Tabu

if |Tabu| > l then
repeat until |Tabu| < l

Tabu← Tabu \ {c} where c ∈ Tabu

S← bestNeighbor
return Best

Both simulated annealing and tabu search have been applied to path planning

for autonomous robots in simulated 2D static environments. One approach for path
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planning with simulated annealing compared three path representations (linear, a

Bezier curve, and a spline interpolated curve) and found that all three were able

to produce satisfactory paths if the cooling schedule for the temperature was tuned

correctly (Tavares et al., 2011). Simulated annealing for path planning with circular

obstacles has found satisfactory solutions and scaled well with the number of obsta-

cles (Hayat and Kausar, 2015). Simulated annealing with multiple goals calculated

satisfactory solutions for two UAVs in suitable time (Behnck et al., 2015). Finally,

work with an online tabu search-based motion planner (Masehian and Amin-Naseri,

2008) and sampling-based collision detection with tabu search has done sensor-based

path planning (Khaksar et al., 2012). Both approaches incorporated aspiration and

diversification. Results showed satisfactory paths in convex, concave, and maze envi-

ronments.

This section has reviewed two single-solution metaheuristics that have been used

for robotic path planning: simulated annealing and tabu search. Both methods use

heuristics to control the trade-off between exploration and exploitation to improve

upon the performance of hill climbing. Although several approaches used these meta-

heuristics for path planning, the approaches have been evaluated in simplistic, unre-

alistic environments and no one approach has been thoroughly compared with other

path planning approaches. The next chapter reviews population-based metaheuris-

tics inspired by evolution and swarm behavior. A large body of research has applied

those algorithms to path planning because they appear to find better solutions more

efficiently.
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3. Population-based Metaheuristics for Path Planning

Many population-based metaheuristics have been inspired by biological mechanisms

and the behavior of organisms (Manikas et al., 2007). One broad category of population-

based metaheuristics is evolutionary algorithms, which use mechanisms inspired by

Darwinian principles, such as survival of the fittest and natural selection, to guide

search. Recall that a candidate is a path found during search and a candidate’s neigh-

bor has a single action changed in, added to or removed from the candidate’s sequence

of actions, with appropriate changes to the neighbor’s states. The first section reviews

four kinds of evolutionary algorithms in the context of autonomous robot navigation:

genetic algorithms, genetic programming, evolutionary programming, and differential

evolution. Later sections discuss swarm algorithms and hybrid metaheuristics.

3.1 Evolutionary Algorithms

Inspired by biological inheritance, genetic algorithms are evolutionary algorithms that

simulate mechanisms such as reproduction, mutation, recombination, and selection.

A genetic algorithm creates a set of candidates that represent individuals in a popu-

lation P . In each iteration, the population is called a generation. Genetic operators

(e.g., reproduction, crossover, and mutation) are applied to the current generation to

produce the next generation. A fitness function is used to evaluate the quality of

each candidate based on domain-specific criteria.

Pseudocode for a basic genetic algorithm appears in Algorithm 7, adapted from Back

(1996). Initially, Best is the candidate with the greatest fitness value in the initial

population P . Then, on each iteration, two parents, p1 and p2 are randomly selected

with replacement from the population, and p1 and p2 reproduce, via the crossover

function, to produce two children, c1 and c2. (For crossover, both parents are par-
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Algorithm 7: Genetic Algorithm

s← population size
P← a population of size s of randomly generated candidates
P ′ ← [ ]
m← mutation probability
Best← candidate with max fitness in P
repeat until Best is a satisfactory solution, there has been no significant
change in P for many iterations, or overall computation time is exhausted

while |P ′| < s do
p1 ← parent 1, a randomly selected candidate from P
p2 ← parent 2, a randomly selected candidate from P
{c1, c2} ← crossover(p1, p2)
c1 ← mutate(c1,m)
c2 ← mutate(c2,m)
P ′ ← P ′ ∪ {c1, c2}

end
if fitness(Best) > {max

c∈P ′
fitness(c)} then

P ′ \ {arg min
c∈P ′

fitness(c)}

P ′ ← P ′ ∪ {Best}
else

Best← {arg max
c∈P ′

fitness(c)}

end
P ← P ′

P ′ ← [ ]
return Best
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titioned into two sections at the same split point. Then, c1 is created from the first

section of p1 followed by the second section of p2, and c2 is created from the first

section of p2 followed by the second section of p1.) After c1 and c2 are produced,

they are subjected to the mutate function, which randomly changes each of them

with probability m. They are then added to a new population P ′, the next genera-

tion. This process repeats until the size of P ′ reaches the population size s. Next, if

the new population P ′ does not contain a candidate with higher fitness value than

Best, then the candidate with the lowest fitness value in P ′ is replaced with Best.

Otherwise, if the child population P ′ does contain a candidate with higher fitness

value than Best, then that candidate replaces Best. Finally, the population P is

replaced with P ′ and the entire process is repeated. This continues until either Best

is a satisfactory solution, there is no significant change in the fitness of the candidates

in P for many iterations, or overall computation time is exhausted.

Candidates in genetic algorithms are typically encoded as fixed-length strings.

Each action is assigned a unique bit pattern, and the sequence of actions in a candidate

is concatenated into a bit string. For example in path planning, if Move is encoded as

00, Turn Left as 01, and Turn Right as 11, then the candidate string 00 01 01 00 00

11 represents the sequence 〈Move, Turn Left, Turn Left, Move, Move, Turn Right〉.

Genetic algorithms use fixed-length strings for candidates because it simplifies the

data structures for P and P ′, and allows for straightforward crossover and mutation

functions. Candidates in path planning rarely have the same number of actions,

however, so a variety of different candidate encodings have been devised.

Instead of the uniform random selection of parents from P , many genetic algo-

rithms use roulette wheel selection, which selects from P with probability proportional

to the candidates’ fitness value. Another common method is tournament selection

where, on each iteration, two candidates are randomly selected and the one with the
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higher fitness value is the one allowed to reproduce. Some genetic algorithms modify

the crossover function so that it makes multiple splits instead of a single split, which

complicates recombination.

Genetic algorithms have been used for path planning for autonomous robots. One

approach compared simulated annealing, tabu search, and a genetic algorithm to

minimize travel distance in a simulated, static, well-known environment (Hussein

et al., 2012). Empirical evaluation showed that simulated annealing generated the

shortest path fastest, the genetic algorithm found satisfactory solutions fastest, and

tabu search was slowest. Other work developed tabu search for global path planning

in small, medium, and large-scale grid environments with obstacles and compared it

with a genetic algorithm (Châari et al., 2014). Experiments showed that tabu search

found satisfactory solutions faster than the genetic algorithm in nearly all cases.

Another approach developed a multi-objective path planning method with a ge-

netic algorithm that optimizes path length, path safety, and path smoothness in a

simulated environment with static obstacles (Ahmed and Deb, 2013). This approach

encoded a candidate as a variable-length integer vector, which represented the se-

quence of movements a robot makes in a 2D grid environment. Empirical results

showed that the approach outperformed a single-objective genetic algorithm in envi-

ronments up to 90% obstructed by obstacles. Another approach encoded candidates

with a variable-length bit string for path planning in a simulated environment with

static and dynamic obstacles; it produced shorter paths than a model with fixed-

length encoding (Tu and Yang, 2003).

Other approaches have integrated domain-specific knowledge with genetic algorithm-

based path planning. One method incorporated a grid representation of the environ-

ment and local search-based genetic operators for complex static and dynamic envi-

ronments (Hu and Yang, 2004). Simulation results showed the incorporation of these
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specialized genetic operators produced shorter paths more quickly than a genetic al-

gorithm without them. Other work modified the mutation operator to prevent paths

through obstacles and thereby avoid premature convergence (Tuncer and Yildirim,

2012). Experiments in simulation compared this mutation operator with several other

mutation operators; results showed that this path-sensitive approach found more sat-

isfactory solutions with better average fitness values in approximately the same time

as the other methods.

Research has also explored the use of genetic algorithms to do path planning for

UAVs in 3D environments. One approach represented the path as B-spline curves with

the candidates for the genetic algorithm as the control points of the curves (Mittal

and Deb, 2007). The approach considered multiple objectives, and in simulation it

produced feasible paths under the requirement that the path pass through a specified

point. Another method accounted for the physical and computational capabilities of

the UAVs and mission specific objectives, and found optimal paths in 3D environ-

ments with multiple threats, again in simulation (Sanders and Ray, 2007).

Genetic algorithms have also been applied to path planning for cooperative multi-

robot systems (Cai and Peng, 2002). This work introduces and adaptively updates a

probability for crossover, evolves the candidate paths of individual robots in their own

sub-populations, evaluates candidate fitness over the entire population, and encodes

each candidate as a fixed-length decimal. Simulation results showed that the ap-

proach produced satisfactory paths for two robots. Another method for coordinated

path planning with multiple UAVs accounted for the physical and computational

capabilities of the UAVs and mission specific objectives (Zheng et al., 2005). In sim-

ulation it produced feasible routes for up to three UAVs in a 3D environment with

multiple threats. A similar approach for coordinated path planning for multiple UAVs

incorporated specialized genetic operators and evolved separate populations for each
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UAV’s path (Besada-Portas et al., 2010). Simulated scenarios showed the approach

produced feasible paths for up to six UAVs in dynamic 3D environments with multiple

threats.

While the approaches discussed above made simplifying assumptions and were

tested in simulation, other work has considered hardware and implementation issues

on physical robots. A genetic algorithm was implemented on-board a small robot

with limited hardware resources in a static environment with obstacles (Burchardt

and Salomon, 2006). The robot ran the algorithm in real-time and reached its goal in a

simple environment with four obstacles. A parallel genetic algorithm on an embedded

processor with a Field Programmable Gate Array (FPGA) produced smooth global

path plans, was faster, and used fewer resources than it did without FPGA in an

environment with static obstacles (Tsai et al., 2011).

Genetic programming is an evolutionary approach similar to genetic algorithms,

but the population is a set of computer programs that solve a given problem rather

than a set of strings (Koza, 1992). The goal of genetic programming is to find the

computer program that best solves a given problem. These algorithms are typically

written in a functional programming language such as Lisp. Each program is repre-

sented as a unit, and the genetic programming algorithm recombines, mutates, and

selects among them at each iteration (Poli et al., 2008). The structure of a genetic

programming algorithm is identical to Algorithm 7, except that candidates are com-

puter programs.

Early work proposed genetic programming with Lisp for path planning to multiple

targets on a factory floor (Yamamoto, 1998). Each computer program candidate was

a sequence of functions, such as move forward, move backward, turn right, and turn

left. The fitness function evaluated each program based on the total distance travelled.
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Simulations showed the approach produced a satisfactory path in an environment with

four targets.

A later approach had unique initial and goal positions for multiple robots, and

sought satisfactory paths that avoided collisions (Kala, 2012). A candidate was a

sequence of integers interpretable through a grammar as a program. The algorithm

tried to optimize the paths of the individual robots separately, while the fitness func-

tion considered collision avoidance. The approach was able to produce collision-free

paths for up to five robots in a simulated maze environment.

Recently, a genetic program did multi-objective path planning for UAVs (Yang

et al., 2016). Each function in the program candidate is stored as a binary tree of

programming operators that can be decoded into the direction of the next step in

the path. A sequence of these functions represents a UAV’s path, while the fitness

function evaluates the path’s length, flight altitude, and threat level. This method

produced paths with better fitness values than a genetic algorithm in a simulated

environment.

Evolutionary programming is similar to genetic programming, but addresses a

single parameterized program. The search space is the set of programs created by the

assignment of values to the program’s parameters (Fogel, 1999). On each iteration,

the population is a set of vectors, each of which represents an instantiation of the

parameters. All the candidates in the population are mutated and the new population

is selected from the parents and children based on their fitness values. Evolutionary

programming repeats these steps until it finds a satisfactory candidate that optimizes

the output of the program.

Differential evolution algorithms combine aspects of genetic algorithms and evo-

lutionary programming (Storn and Price, 1997). Like evolutionary programming, the

population of interest is sets of real-valued vectors, but these vectors are parame-
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ters for a function rather than a program. On each iteration, the vectors undergo

transformations similar to those in genetic algorithms. The major difference is that

the recombination function creates a child as the sum of the weighted difference be-

tween two randomly selected population members and a third random population

member (Price et al., 2006).

Differential evolution has also been used for path planning in autonomous robot

navigation. One approach used differential evolution for coordinated navigation of

UAVs in a static environment over the ocean (Brintaki and Nikolos, 2005). As in

other multi-robot approaches, it assigned different initial positions to each UAV and

produced a path plan for each UAV to a single target position that considered collision

avoidance, multiple constraints, and multiple objectives. Simulation results showed

that the approach produced feasible paths for three UAVs in a reasonable amount of

time. A more recent study sought to optimize the tuning parameters of a differential

evolution-based path planner for UAVs (Kok and Rajendran, 2016). It examined four

tuning parameters (population size, differential weight, crossover rate, and number of

generations) and found an optimal setting for these parameters that depended on a

user-specified trade-off between minimal path cost and minimal computational cost.

This section has reviewed four evolution-inspired metaheuristics that have been

used for robotic path planning: genetic algorithms, genetic programming, evolution-

ary programming, and differential evolution. These population-based metaheuristics

all use Darwinian principles as heuristics to seek satisfactory solutions, but they differ

their representation of the problem. The methods incorporate hill-climbing through

selection, and randomization through mutation. The disadvantages of evolutionary

algorithms are that there is no guarantee that the optimal solution will be found in

finite time, that parameters like population size must be tuned by hand, and that

maintenance of a large candidate population can be computationally and memory in-
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tensive. The next section reviews population-based metaheuristics inspired by swarm

intelligence that explore the search space with different heuristics.

3.2 Swarm Algorithms

Swarm intelligence metaheuristics are inspired by the crowd behavior of organisms

such as ants and bees or the movement of particles (Bonabeau et al., 1999). These

methods emulate highly motivated animals’ strategies in their search for food. Swarm

algorithms also incorporate mechanisms that allow candidates to communicate infor-

mation to one another.

Ant colony optimization is a swarm-based metaheuristic inspired by the foraging

behavior of ants (Dorigo et al., 2006). It simulates ants’ ability to communicate

indirectly through pheromones that mark the shortest route between their nest and

food sources. Ants select a route to follow probabilistically based on the strength of

the pheromones on the route. When an ant returns from a food source, it deposits

pheromones in proportion to the amount of food it collected from that source.

Ant colony optimization represents the search space as a state-space graph, where

a node is a state and an edge is an action that represents a transition from one state to

another state. A solution begins at the node labeled as the initial state and traverses

the graph to a node labeled as the goal state. A candidate for ant colony optimization

is a finite ordered sequence of interleaved nodes and edges in the state-space graph.

In this paper, only ant colony optimization uses this alternate definition of candidate.

Pseudocode for an ant colony optimization algorithm appears in Algorithm 8,

adapted from Blum (2005). After the algorithm’s parameters (the number of ants and

pheromone trails) are initialized, on each iteration, the algorithm cycles through four

phases. First, artificial ants are probabilistically assigned to candidates based on the

pheromone values in the ConstructAntSolutions function. Then theApplyLocalSearch
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Algorithm 8: Ant colony optimization

Set number of ants
Initialize pheromone trails
while Termination conditions not met do

ConstructAntSolutions()
ApplyLocalSearch()
PheromoneUpdate()
DaemonActions()

end

function improves each candidate through a local search at the end of the candidate.

The PheromoneUpdate function then increases the pheromone values along the edges

associated with promising candidates and decreases those associated with poor can-

didates. Finally, the DaemonActions function collects global information that can

be used to bias the search process from a non-local perspective, such as an increase in

pheromones for the best candidate found so far. These steps repeat until the ants find

a satisfactory solution or overall computation time is exhausted. In path planning,

the robot follows the satisfactory solution produced after ant colony optimization ter-

minates. Each ant could be a robot exploring the physical space, however, a plan, by

definition, is a sequence of actions selected prior to execution and so a robot exploring

the space to find the goal is not path planning.

Ant colony optimization has improved a sub-optimal collision-free path in a real-

time path planning algorithm (Guan-Zheng et al., 2007). Compared in simulation

to a genetic algorithm, the ant-colony algorithm converged to the optimal path in

fewer iterations and less time. Another approach for a static environment has also

outperformed a genetic algorithm (Buniyamin et al., 2011). On average over five runs,

the ant colony found the optimal path in fewer iterations and less time. Other work

modified ant colony optimization for path planning with two kinds of ants: one kind

explored the space randomly and left pheromones on promising candidates, while the
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other explored only the candidates with high pheromone values (Yao et al., 2015).

This method adjusted the number of the two types of ants to prevent premature

convergence. In simulation this method outperformed two other versions of ant colony

optimization and Dijkstra’s algorithm.

An approach for underwater vehicles in a 3D environment had ants explore the

state-space graph and keep track of their pheromone values for candidates indepen-

dently (Yang et al., 2015). After all the ants found paths to the goal, the global

pheromone values were updated. This modification sought to prevent the ants from

herding toward potential local optima. Although it produced shorter paths than an

unmodified ant colony optimization in simulation, search was not consistently faster.

An approach for path planning for cooperative multirobot systems with a genetic

algorithm was improved in several ways (Qu et al., 2013). The fitness function con-

sidered path length, safety, and smoothness; several populations evolved in parallel,

and it incorporated a new genetic operator and collision avoidance among robots. In

simulation, the approach produced shorter paths faster than ant colony optimization

for a single robot and was able to produce near-optimal paths for three robots.

The artificial bee colony is another swarm-based metaheuristic, this one inspired

by the foraging behavior of honey bees (Karaboga and Basturk, 2007). An artificial

bee colony algorithm simulates a colony of three groups of bees: employed bees,

onlooker bees, and scout bees. A candidate path represents a food source for the bee

colony. The quality or fitness of a candidate is measured by its amount of nectar.

The hive represents a place where the bees congregate and exchange information. An

artificial bee colony combines hill-climbing local search (through the employed bees)

with global search (through the onlooker bees), and random search (through the scout

bees).
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An employed bee travels between a candidate in the search space and a dance area

in the hive. There is a one-to-one mapping between employed bees and candidates. An

employed bee’s dance is based on the amount of its candidate’s nectar. An onlooker

bee watches the dances of employed bees when they return to the hive, and chooses

a candidate based on the dances. A scout bee randomly searches the area around the

hive for candidates. An employed bee’s candidate is exhausted or abandoned when

it cannot be further improved. An abandoned candidate is replaced by a candidate

found by a scout bee.

Algorithm 9: Artificial Bee Colony

{E,O, S} ← Partition(B) // B is the set of all bees
ei ∈ E ← initial unique random candidate ci ∈ C
lim← Number of iterations until a candidate is abandoned
repeat until
Best is a satisfactory solution or overall computation time is exhausted

Employed bees E greedily select between ci and neighbor(ci) based on the
nectar amount
if neighbor(ci) is selected then

neighbor(ci) replaces ci in C
Onlooker bees O watch the dance of employed bees and visit a cj ∈ C
probabilistically

Onlooker bees O greedily select between cj and neighbor(cj) based on the
nectar amount
if an employed bee has not moved from ci for lim iterations then

Scout bee randomly searches near the hive to discover a new candidate
n

Employed bee abandons ci and is reassigned to n
n replaces ci in C

Best←
candidate with maximum nectar among employed and onlooker bees

return Best

Pseudocode for a general artificial bee colony algorithm appears in Algorithm 9,

adapted from Karaboga and Basturk (2007). The initial population is a random set of

candidates. On each iteration, each subset of bees performs its respective procedure.
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Each employed bee in E determines the amount of nectar in its candidate and in one

neighbor of its candidate. If the neighbor has more nectar than its assigned candidate,

then the bee reassigns itself to the neighbor.

Next, the employed bees return to the hive and dance to share their nectar in-

formation with the onlooker bees O. The onlooker bees assess this data from the

employed bees, and each selects a candidate probabilistically. The more nectar in

a candidate, the more likely an onlooker bee is to select it. An onlooker bee then

travels to its selected candidate and evaluates the amount of nectar at a neighbor

of that candidate. If the neighbor has more nectar than its selected candidate, then

the onlooker bee selects it. Onlooker bees are assigned to candidates for a single it-

eration since they select new candidates probabilistically again in the next iteration.

The candidate with the highest nectar amount among employed and onlooker bees

is retained as Best. Thus, an onlooker bee’s candidate is only retained if it becomes

Best.

If any employee bee has not changed its candidate for lim iterations it abandons

the candidate. The scout bees S randomly search for new candidates. If any employed

bee had been assigned to a now-abandoned candidate then it is randomly reassigned

to a new candidate found by a scout bee. The algorithm terminates either when Best

is a satisfactory solution or computation time is exhausted.

An approach used an artificial bee colony to find safe and smooth paths for mul-

tiple robots in an environment with static obstacles (Dou et al., 2014). The fitness

function considered both path length and the distance between robots. Simulations

with three robots found satisfactory paths faster than a standard artificial bee colony.

Particle swarm optimization (PSO) is inspired by the movement of flocks of bird

and schools of fish (Kennedy and Eberhart, 1995). A PSO algorithm is similar to a

genetic algorithm, but it does not use evolutionary functions, such as crossover and

31



mutation. Instead, it maintains a population of candidates, called particles, that move

through the search space to seek a satisfactory solution. A fitness function evaluates

the quality of the particles. Each particle performs a local search whose direction is

influenced by the other particles.

A PSO is analogous to bird flocking, where each particle is a bird in the search

space. The birds search for a hidden food source, which represents a satisfactory

solution with a minimally acceptable fitness value. They do not know where the food

source is, but each bird senses how close it is to the food as the difference between

its current fitness value and the minimally acceptable fitness value. The bird closest

to the food source squawks loudest, and all the other birds move toward it. If any

other bird gets closer to the food source then that bird squawks still more loudly and

the birds are drawn toward it instead. This continues until one of the birds finds the

food source.

The pseudocode for a PSO algorithm appears in Algorithm 10, adapted from

Kennedy and Poli and their colleagues (Kennedy et al., 2001; Poli et al., 2007). PSO

is initialized with a group of random particles P . A particle’s position is a path in the

search space. Each particle pi ∈ P has a best known local position Li, the position

with the highest fitness value it has seen thus far in the search. The population’s

best known global position GBest is the position with the highest fitness value across

all the particles. A particle’s movement through search space is determined by its

velocity vector vi, calculated as a weighted sum of Li and GBest. On each iteration,

the best known local positions Li are updated, GBest is updated, and then the

particles move based on their velocity vi. This repeats until GBest is a satisfactory

solution, there has been no significant change in the fitness values of P for many

iterations, or overall computation time is exhausted.

32



In one PSO approach to robot navigation, a path was represented with Ferguson

cubic splines and then PSO optimized the parameters of the splines to find a path

around the obstacles (Saska et al., 2006). In simulation, the method produced feasible

and shorter paths than two traditional nonmetaheuristic methods. One approach with

an artificial bee colony constructed a path described by cubic Ferguson splines and

then modified the parameters of the splines to find an optimal path in an environment

with static obstacles (Mansury et al., 2013). In simulation, this approach converged to

an optimal path faster than either a genetic algorithm or PSO. In another approach,

path planning was formulated as a time-varying nonlinear programming problem with

four dimensions and then a PSO was used to solve the reformulated problem (Ma

et al., 2013). Simulations in an environment with static and dynamic obstacles showed

that the approach quickly converged to a satisfactory solution.

Algorithm 10: Particle Swarm Optimization

s← population size
P← a population of size s of randomly generated particles p
L← the fitness value and position of the initial particles in P // Best local
known position

GBest← {}
repeat until GBest is a satisfactory solution, there has been no significant
change in the fitness values of P for many iterations, or overall computation
time is exhausted

for particles pi, i = 1...s do
if fitness(pi) > fitness(Li) then

Li ← {fitness(pi), position(pi)}
end
GBest← position(arg max

l∈L
fitness(l)) // Position with max fitness in P

for particles pi, i = 1...s do
vi ← velocity(position(Li), GBest) // Determine particle velocity with a
weighted combination of local best position and global best position

updatePosition(pi, vi) // Update particle position using velocity

end
return GBest
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A multi-objective PSO algorithm for path planning considered terrain, danger

sources, and path length (Geng et al., 2013). This algorithm partitioned the environ-

ment and combined paths from each partition. The approach outperformed a genetic

algorithm in simulation and successfully guided a robot in a real-world outdoor en-

vironment with static obstacles and different terrains. A case study in simulation

compared the performance of multi-objective path planning algorithms for UAVs

with multiple performance metrics and graphical representations and found that dif-

ferential evolution outperformed planners based on genetic algorithms and particle

swarms (Besada-Portas et al., 2013).

A PSO approach for a single UAV in a 3D environment replaced the Newto-

nian rules for particle movement with quantum mechanics and the velocity vector

with a phase angle vector that maps the position of particles (Fu et al., 2012). In

simulation, this method produced lower cost paths more quickly than a genetic al-

gorithm, differential evolution, and a standard PSO. Another approach parallelized

a real-time genetic algorithm for UAV path planning in a 3D environment on mul-

ticore CPUs (Roberge et al., 2013). The trajectories produced by this algorithm in

simulation significantly outperformed a similar algorithm based on PSO.

An artificial bee colony for a UAV was modified to consider distances to threats (Li

et al., 2013). It allowed the UAV to enter threat regions if the fitness of the path

outweighed the risk. Simulation results showed that this approach converged to an

optimal solution faster than PSO. Another approach with an artificial bee colony had

an objective function that addressed the distance to the goal, obstacle avoidance,

and robot collision avoidance (Liang and Lee, 2015). It modified the artificial bee

colony with an elitist strategy, so that the best candidate influenced the direction of

search and adaptively changed the population size. The approach produced paths

for five robots in a simulated environment with static obstacles. It was also tested
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in another problem domain where it outperformed a genetic algorithm and PSO in

the search for a global optimum of twelve convex and nonconvex multidimensional

numerical functions (e.g., find the value of x that minimizes f(x) =
∑30

i=1 x
2
i , where

−100 ≤ xi ≤ 100).

A recent approach implemented a differential evolution path planning algorithm

for a UAV in a 3D environment with constraints (Zhang and Duan, 2015). For

candidate selection, it evaluated each potential solution based on how well it satisfied

the constraints. Over 50 test runs, this approach produced paths with the lowest

average cost and always found a path that met all constraints, compared to a PSO,

an artificial bee colony, and four other versions of differential evolution.

Other work has considered multi-robot path planning with differential evolution

but from a distributed perspective (Chakraborty et al., 2009). Rather than deter-

mine paths for all robots simultaneously, it constructed paths for each individual

robot separately, with a fitness function that considered path length and potential

collisions. This approach was tested in simulation with up to 14 robots and produced

better paths than a centralized-version of differential evolution and PSO. Another

approach used an artificial bee colony for path planning for multiple robots. In an

environment with static obstacles, a fitness function considered both the shortest

paths for all robots and collision avoidance (Bhattacharjee et al., 2011). This ap-

proach outperformed differential evolution and PSO in a simulated environment with

ten robots.

A firefly algorithm is inspired by the flashing behaviour of fireflies, where a firefly

is attracted to other fireflies in proportion to the brightness of their flashes. One

path planning approach for a UAV modified the firefly algorithm to allow fireflies

to exchange information (Wang et al., 2012b). Over 100 simulations, the approach

minimized the objective function most often on average and in approximately the
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same amount of time in comparison with ant colony optimization, PSO, differential

evolution, three different genetic algorithms, and two other evolutionary-based meta-

heuristics. A bat algorithm is inspired by the echolocation behaviour of bats, which

vary the frequency, loudness and rate of pulse emissions to attract or repel other bats.

A bat algorithm for a UAV was modified with a mutation operator and, in simulation,

outperformed the same set of metaheuristic methods as the modified firefly algorithm

approach (Wang et al., 2012a).

A cuckoo search algorithm is inspired by the parasitic behavior observed in some

cuckoo species that lay eggs in the nests of other bird species. The algorithm rep-

resents a candidate as an egg, and these eggs are stored in host nests. A cuckoo

attempts to replace an egg in some nest with its own egg (a new candidate). The

host recognizes and removes the impostor egg with some probability. The best nests

(those with high quality eggs) are carried over to the next generation. This contin-

ues until a satisfactory solution is found or overall computation time is exhausted.

Cuckoo search in an unknown environment with static obstacles produced shorter

paths than a genetic algorithm and PSO in simulation (Mohanty and Parhi, 2016).

It also controlled a physical robot in real-time to avoid obstacles and reach its goal

successfully in a static, partially observable, simple small indoor environment.

Finally, a few population-based metaheuristics are neither evolutionary nor swarm-

based. A gravitational search algorithm is based on Newtonian physics. One exam-

ple planned paths for a UAV with an improved memory mechanism and a modified

weighting scheme (Li and Duan, 2012). It converged to a better solution more quickly

than a genetic algorithm or a PSO in a simulated environment with static obstacles.

Harmony search, inspired by the improvisation process of jazz musicians, has also

been used for path planning in a static environment (Panov and Koceski, 2013). It
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guided a 3-wheel robot in real-time, and in simulation produced feasible solutions

faster than ant colony optimization or a genetic algorithm.

This section has reviewed swarm algorithms and other metaheuristics inspired

by natural phenomenon and physical processes, and described approaches that use

these methods for robotic path planning. Swarm algorithms incorporate communica-

tion mechanisms, such as pheromones, dances, and squawks, so that local informa-

tion can influence the entire population. Evolutionary algorithms lack an equivalent

mechanism. Swarm algorithms, however, still face the same issues as evolutionary

algorithms: no guarantee of an optimal solution in finite time, performance that is

highly dependent on parameter tuning, and computational intensity. As a result, re-

searchers have sought to combine population-based metaheuristics with each other or

with other methods. The next section reviews the use of such hybrid metaheuristics

for path planning.

3.3 Hybrid Metaheuristics

A hybrid metaheuristic combines multiple metaheuristics or uses a metaheuristic

along with another approach (e.g., machine learning). In an effort to resolve the

shortcomings of individual metaheuristic methods, hybrid approaches have been used

for path planning in autonomous robot navigation. Typically, the hybrid metaheuris-

tic takes one of two forms: either each component is used separately for a different

part of the navigation system or components of both methods are blended together

to create a new, hybridized system. For example, a hybrid of the first type could use

a genetic algorithm for path planning and a PSO for obstacle avoidance, whereas a

hybrid of the second type could use genetic operators to modify the particles in a PSO

for path planning. This section focuses first on combinations of two metaheuristics

and then on those that combine a metaheuristic with other techniques.
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Several hybrid metaheuristics combine two metaheuristics for a single robot. One

method modified ant colony optimization to include a crossover operator from a ge-

netic algorithm (Châari et al., 2012). Simulations in a static environment showed that

the approach was faster and generated shorter paths than ant colony optimization

and a genetic algorithm. In another approach, PSO was combined with biogeography-

based optimization (BBO), an evolutionary metaheuristic inspired by the distribution

of biological species through time and space, for path planning in a static environ-

ment (Mo and Xu, 2015). Experimental results in simulation showed that this hybrid

method outperformed BBO, a genetic algorithm, and PSO.

A memetic algorithm is inspired by memes, ideas or behaviors that spread from

person to person within a culture (Moscato and Cotta, 2003). Because they incorpo-

rate some aspects of genetic algorithms, memetic algorithms are sometimes considered

hybrid metaheuristics. A memetic algorithm maintains a population of candidates

and refines this population over multiple generations. A candidate is improved with

local search techniques before it is added to the next generation. One approach

combined a memetic algorithm with a bacterial evolutionary algorithm, inspired by

microbial evolution (Botzheim et al., 2012). It replaced the genetic operators of

mutation and crossover with bacterial mutation and gene transfer operators. The ap-

proach was able to direct two different kinds of robots in several partially observable,

indoor, real-world environments with static obstacles. In simulation, it outperformed

a genetic algorithm and an unmodified memetic algorithm.

Dual hybrid metaheuristics have also been applied to multi-robot path planning.

A recent approach combined an improved PSO and improved gravitational search to

update the position of particles with both the velocity from PSO and the acceleration

from gravitational search (Das et al., 2016b). A similar approach used differential

evolution to perturb particle velocities in PSO (Das et al., 2016a). Both approaches
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converged to a better solution faster than a PSO, gravitational search, or tabu search

in a simulated 2D environment with up to 25 robots. They also guided two physical

robots through a partially observable, simple, small, indoor environment with static

obstacles.

Hybrids of two metaheuristics have also planned paths for a UAV. In simula-

tion, ant colony optimization was modified with differential evolution to optimize the

PheromoneUpdate step (Duan et al., 2010). It produced shorter paths more quickly

than unmodified ant colony optimization. Another approach updated the velocity

in a quantum-based PSO with modified differential evolution for a UAV at constant

altitude (Fu et al., 2013). This approach converged faster and produced lower cost

paths on average over 20 simulations in comparison to a genetic algorithm, differen-

tial evolution, and PSO. A third method ran multiple PSO and genetic algorithms

in parallel on a multicore CPU and kept the best candidate across the various pop-

ulations (Roberge et al., 2014). In simulation, this approach produced significantly

lower cost paths over 50 trials compared to a genetic algorithm and PSO.

Two approaches for a UAV used the genetic operators from differential evolution

to modify the way cuckoo search selects a cuckoo (Wang et al., 2012c) and the way a

bat algorithm selects a bat (Wang et al., 2016). The first approach outperformed ant

colony optimization, differential evolution, three different genetic algorithms, PSO,

BBO, and evolutionary strategy (another evolutionary algorithm) in a simulated 3D

environment with five obstacles. The second approach converged to an optimal 3D

path in simulation faster than an unimproved bat algorithm, and produced approxi-

mately the same result as the first approach in the same environment.

Table A1 (Appendix) summarizes the approaches that combine two metaheuristics

discussed above. There is no clearly superior method, because the approaches tested

different numbers and types of robots in different environments. The only pattern
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is that all but two approaches combined an evolutionary algorithm with a swarm

algorithm. As mentioned earlier, this may be due to an effort to draw on the unique

strengths of each method. Since most of this work is recent, there is still significant

room for creative new combinations and improvements on those approaches. Any

new methods, however, should be evaluated in real-world environments with physical

robots to show the feasibility of actual deployment.

Metaheuristics have been combined with other exact and heuristic-based methods

to do path planning for autonomous robot navigation. Rough set theory, a mathe-

matical tool to deal with imprecise, inconsistent, and uncertain information, has been

used to improve the initial population for a genetic algorithm (Wu et al., 2006). Simu-

lation experiments showed that the approach was faster than a genetic algorithm with

binary encoding and converged to a solution with higher fitness in a simulated envi-

ronment with up to 30 static obstacles. Genetic algorithms have also been adapted

for path planning in unusual environments. Work for an autonomous underwater

vehicle incorporated the space-time variability in an ocean environment through two

novel genetic operators (Alvarez et al., 2004). The population of candidates was

initialized with dynamic programming, a method that breaks a complicated problem

down into simpler sub-problems recursively and stores and solves those sub-problems.

This approach was able to produce an optimal 3D path in a simulated environment

with dynamic currents. Another approach generated multiple populations of paths

for a UAV with a genetic algorithm and then used linear programming to combine

these paths (Arantes et al., 2016). In simulation, the approach quickly found robust

solutions in 50 different 2D environments with non-convex static obstacles.

Other work for multiple robots combined a memetic algorithm with differential

evolution to improve the global search coverage and reinforcement learning, a ma-

chine learning method in which an agent learns how to act through interaction with
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the environment, to refine the candidate locally (Rakshit et al., 2013). This approach

outperformed differential evolution, PSO, and a genetic algorithm in a partially ob-

servable, simple, small, real-world environment with two robots and five static obsta-

cles. In another approach, PSO was used for path planning for a single robot with

two objectives, path length and smoothness, and it was combined with the proba-

bilistic roadmap method, a sampling-based method that builds a network graph of an

environment, for obstacle avoidance (Masehian and Sedighizadeh, 2010b). Another

approach combined a probabilistic roadmap with a negative PSO, a velocity method

that seeks to avoid the worst particle position rather than move towards the best

particle position (Masehian and Sedighizadeh, 2010a). The approaches were faster

and produced shorter paths than the probabilistic roadmap method with Djikstra’s

algorithm and an unmodifed PSO.

A recent approach combined an artificial bee colony with evolutionary program-

ming for path planning in an environment with static obstacles (Contreras-Cruz et al.,

2015). The artificial bee colony component created a set of collision-free paths from

the initial position to the goal position, and then the evolutionary programming

component optimized these initial paths based on path length and smoothness. A

candidate path was represented as a sequence of positions. The mutation operator

had four ways to modify a path: delete a position, smooth the path around a position,

move a position to a new collision-free position, or delete all the positions between

two randomly selected positions. The approach produced shorter, smoother paths in

less time than a probabilistic roadmap method in 46 simulated small and large envi-

ronments with differing amounts of realistic and artificial obstacles, and was able to

successfully guide a physical robot to its goal around two static obstacles in a small,

simple indoor environment.
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Chaotic search, based on nonlinear chaotic system dynamics, has been used to

avoid local optima (Caponetto et al., 2003). As opposed to random search which

explores the search space uniformly, chaotic search uses ergodicity and stochasticity

to explore the search space nonlinearly without repetition. One approach for a UAV

used chaotic search to replace local search in an artificial bee colony algorithm (Xu

et al., 2010). It converged more quickly to a lower-cost path than a standard artificial

bee colony in a simulated 2D environment with static and dynamic obstacles. Another

approach for a 3D environment adapted PSO with a fitness-scaling method, adaptive

parameter adjustment, and a chaotic search method (Zhang et al., 2013). Fitness

scaling transforms fitness values with ranking and power functions. This approach

converged towards the best path faster than a genetic algorithm, simulated annealing,

or an artificial bee colony. A third method for a 3D environment used chaotic search

for adaptive parameter adjustment in a real-time PSO (Cheng et al., 2014). Compared

in simulation to a genetic algorithm, simulated annealing, an artificial bee colony,

and a standard PSO, this approach had lower average computation time and a higher

success rate.

Fuzzy logic reasons from incomplete, ambiguous, distorted, or inaccurate infor-

mation with a range of logical values. One path planning method combined genetic

operators based on domain knowledge and a fuzzy logic control strategy to adap-

tively adjust the mutation and crossover probability in a genetic algorithm (Li et al.,

2006). In simulation of static and dynamic environments, this approach produced

shorter paths in less time than another genetic algorithm. Another approach com-

bined ant colony optimization with a fuzzy logic inference system for path planning

among static and dynamic obstacles (Garcia et al., 2009). The ants accounted for

the distance between the source and target nodes in the PheromoneUpdate step, and
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the paths were evaluated with a fuzzy cost function. This approach was faster than

standard ant colony optimization in simulated experiments.

Artificial potential field (APF) is an obstacle-avoidance method that represents

the environment as an artificial force field where the robot is attracted to the goal

and repulsed by obstacles. One method combined a genetic algorithm with APF to

ensure candidates were collision-free (Miao et al., 2011). Simulations showed that the

approach performed better when the population of candidates was diverse. Another

approach modified APF to plan for a 6-wheeled rover in a 3D rough terrain envi-

ronment (Raja et al., 2015). In this approach, a genetic algorithm minimized a cost

function that considered such rover constraints as roll, pitch, and yaw limitations,

to optimize the weights of the potential field function. Experimental results with an

actual rover on terrain with coarse sand and small rocks showed that the rover suc-

cessfully followed feasible paths produced offline by the approach. A recent approach

combined a modified PSO with APF and a fuzzy logic controller for an environment

with static obstacles (Kuo et al., 2016). This approach outperformed a genetic algo-

rithm, gravitational search, and PSO in simulation, and successfully guided a robot

in a simple, real-world environment with static obstacles.

Inspired by biological nervous systems, an artificial neural network is a machine

learning paradigm with a structure that consists of multiple connected layers of nodes.

A challenge with artificial neural networks is how to determine the best structure to

use. An early approach used a genetic algorithm to evolve the structure of a neural

network (Cliff et al., 1993). In simulation, the neural network planned a path to the

center of a cylindrical arena with no obstacles. A later approach modeled a collision

penalty function with a neural network and then used it with an improved simulated

annealing algorithm to do path planning (Gao and Tian, 2007). The approach pro-
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duced shorter paths in less time than simulated annealing in a simulated environment

with static obstacles.

Table A2 (Appendix) provides an overview of the approaches reviewed above that

combine a metaheuristic with a non-metaheuristic method. These methods address

different environments with different types of robots and most are evaluated in sim-

ulation. Generally, many different kinds of hybrid metaheuristics have been used for

path planning, however, there is no single best combination. Each author presents

an algorithm, validates its performance in a few test environments, and sometimes

compares it with a few other methods. As a result, no single approach has risen above

the rest. Moreover, no single type of hybrid metaheuristic has seen long-term sus-

tained research. Instead, different types have had bursts of popularity. Thus, there

is significant potential to develop new approaches. Once again, any new work should

be evaluated in real-time applications for physical robots.

This chapter has reviewed evolutionary algorithms, swarm algorithms, hybrid

metaheuristics, and their use in autonomous robot navigation. The next chapter

considers cognitive approaches to autonomous robot navigation as an alternative to

the metaheuristic-based approaches seen thus far. Cognitive approaches draw upon

human behavior to improve the navigation abilities of a mobile robot, particularly in

an environment where people are present.
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4. Cognitive Models for Autonomous Robot Navigation

Cognitive science studies the mind and intelligence (Friedenberg and Silverman,

2011). It spans multiple disciplines, including philosophy, psychology, artificial in-

telligence, neuroscience, linguistics, and anthropology (Miller, 2003). Cognitive sci-

ence includes the construction of computational models that seek to explain human

behavior. These models can imitate techniques from human cognition to improve

the behavior of artificial agents. Spatial cognition is the subfield of cognitive science

that studies navigation and wayfinding, spatial problem solving employed by people

to solve navigation problems (Wolbers and Hegarty, 2010).

This chapter first covers heuristics people use in navigation and how they decide

what action to take. The next section reviews cognitive models of human navigation

and wayfinding. It also discusses autonomous robot navigation systems inspired by

human behavior.

4.1 Human Navigation Heuristics

This section reviews results from spatial cognition research on heuristics that people

use in navigation and wayfinding. A decision is a choice among a set of alternatives.

Decision making is the process by which an agent selects an alternative. Reasoning

is the process of drawing a conclusion from information to solve a problem or make

a decision (Leighton, 2004).

Heuristics are used by people to make fast and frugal decisions, especially when

constrained by limited time, knowledge, and computational power (Gigerenzer et al.,

1999). It has been argued that much of human reasoning and decision making can

be modeled by these heuristics without complex deterministic or probabilistic mod-

els that account for all available information. In other words, people have bounded

45



rationality. Gigerenzer proposes three types of heuristics: those that guide search for

alternatives, those that determine when to stop the search, and those that make a

decision given the results of the search. Gigerenzer also suggests that people employ

cognitive economy, that is, they tend to employ the heuristic with the least cognitive

cost.

The spatial environments in which people navigate are complex and dynamic.

People rarely have perfect information about the environment so they cannot make

optimal navigation decisions. Nonetheless, they are still able to travel through chal-

lenging environments with good-enough decisions (Conlin, 2009). People use a vari-

ety of heuristics in navigation and wayfinding to search for paths, and make decisions

when confronted with unknown environments and obstacles. Most heuristics for nav-

igation are either triggered by external information in the environment or by an

internal signal. These heuristics have been examined in outdoor, indoor, and virtual

environments. The wayfinding heuristics that people use in indoor environments have

been shown to be similar to and correlated with the heuristics they use in outdoor

environments (Lawton, 1996). A virtual environment is a visual or audiovisual ar-

tificial representation of an environment that provides an opportunity to examine a

person’s behavior in simulation. In virtual environments that closely resemble the real

world, people use wayfinding heuristics similar to those they used in the associated

real-world environment (Darken and Sibert, 1996).

People adeptly choose the best strategies with respect to the problem they con-

front. Consider, for example, a person who travels to a hospital emergency room

and a person who walks through a park to enjoy the scenery around a lake at the

center of the park. Both are faced with a navigation problem, how to get from their

current location to a target location, but each of them employs significantly different

navigational strategies to solve that problem. It has been argued that human be-
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havior is goal-directed (Aarts and Elliot, 2012) and that the navigation instructions

people give depend upon the recipient’s activity (Hirtle et al., 2011). Additionally,

it has been shown that a person’s wayfinding strategy when she travels through an

environment differs from her strategy to plan a prospective path, or to give route

directions to someone else (Hölscher et al., 2011).

Moreover, within a particular navigation problem, a person may apply different

strategies at different points in the task. A study based on scans of brain activity

provided evidence that people spontaneously shift between different strategies during

a navigation task (Iaria et al., 2003). For example, the person in the park may, at

one point, follow a trail at a leisurely pace and, at another point, leave the trail to

avoid a fallen tree. While on the trail, her strategy could be to walk at a normal pace

and stay in the center of the trail. When she leaves the trail to avoid the fallen tree,

her strategy may change so that she moves more slowly and more cautiously through

the brush. People can adapt their strategies to their overall goal, their current state,

and their environment.

People also acquire spatial knowledge as they navigate. This information is used

both to reason directly and to build internal representations from which to reason.

A visual cue, such as a landmark (an interesting and distinctive object in the en-

vironment), is one type of spatial knowledge that can be used to localize and plan

paths (Richter and Winter, 2014). Examples of visual cues include statues, signs, the

location of the sun, shadows, and colors. People use visual cues to determine their

position in the environment by triangulation or from bearing and distance. Without

visual cues, localization becomes more difficult and people must rely on other methods

to determine their position. Visual cues are also used in path planning as reference

points in the environment. People follow a path more successfully if the waypoints are

semantically meaningful landmarks rather than uninteresting or unremarkable places.
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A frame of reference is a representation of objects in an environment in relation

to some coordinate system. An egocentric frame of reference represents locations

with respect to the perspective of an agent, whereas an allocentric frame of reference

represents locations within a framework external to the agent, regardless of the agent’s

position (Klatzky, 1998). Examples of allocentric frames of reference include the

geographic coordinate system of latitude and longitude, and the cardinal directions

of north, south, east, and west.

Spatial orientation is the ability to maintain an internal representation of one’s

heading with respect to an allocentric frame of reference of the environment (Richter

and Winter, 2014). Path integration is the process by which velocity and acceleration

information are used to update the agent’s position as it moves through an environ-

ment (Loomis et al., 1999). Path integration provides localization independent from

any visual cues in the environment. As they move through an environment, people

also acquire route knowledge, a sequence of locations and landmarks along a path,

from an egocentric reference frame and survey knowledge, the spatial layout of the

environment that includes relations between locations, from an allocentric reference

frame (Latini-Corazzini et al., 2010).

A cognitive map is a mental representation of an environment a person builds

as she moves through that environment (Golledge, 1999). Rather than try to re-

member and reason over all the sensed details of their environment, people use this

compact and meaningful representation to reason and reduce their cognitive load. A

cognitive map uses an allocentric representation of the environment that incorporates

landmarks, route knowledge, and survey knowledge (Tversky, 1993). Landmarks rep-

resent points in the map, routes represent as lines that connect locations in the map,

and survey knowledge determines the spatial relations in the map. It has been ar-

gued that cognitive maps use metric distances and angles (Gallistel, 1990). Later
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work, however, argues that cognitive maps use a non-metric qualitative topological

structure (Foo et al., 2005).

People also use external information, such as maps, photos, verbal descriptions, or

route directions, as heuristics to form an internal representation of the environment

prior to navigation. One study in an indoor environment found that individuals who

studied a map learned a route faster than those who read verbal descriptions (Pazza-

glia and De Beni, 2001). The use of external information, however, can increase cogni-

tive load as individuals try to reconcile the external information with their perception

of the environment. People may use a defensive wayfinding strategy if a mismatch

occurs between the perceived environment and received route directions (Tomko and

Richter, 2015). Additionally, people’s experience and knowledge from other, similar

environments contributes to their internal representation in a new environment. For

example, a person who enters an unknown building does not start with a blank slate,

but uses her previous experience of navigation in buildings and knowledge about

building conventions (e.g., that rooms are arranged around corridors, and that eleva-

tors allow travel to different floors).

The remainder of this section describes heuristics and strategies that have been

observed in human studies. Heuristics used to find and select a path plan are discussed

first, followed by heuristics used in the course of movement through the environment.

Finally, human characteristics and their impact on navigation strategies are outlined.

Before people can plan a path, they must select the criteria that will guide

their search for a plan. It has been observed that people use many different cri-

teria to choose paths, and that the criteria they select depends upon their motiva-

tion (Golledge, 1999). Table 1, adapted from Golledge, shows some of these path-

selection criteria. One general strategy in path planning is to take the shortest path,

but it is not clear how people measure path length. One study proposed three dis-
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tance measures for outdoor movement through a city environment: metric distance,

number of turns, and angular change (Hillier and Iida, 2005). Empirical examination

of pedestrian movement found that paths minimized the number of turns or the an-

gular change. Another study found that commuters to work tended to follow a path

with shorter travel time rather than shorter distance (Zhu and Levinson, 2015). The

criteria a person selects are heuristics that directly impact search for a plan.

Minimize path length Minimize effort
Minimize travel time Longest leg first
Minimize the number of turns Shortest leg first
Maximize the number of turns First noticed path
Minimize the number of curved segments Novel path (different from previously travelled)
Maximize the number of curved segments Avoid congestion
Minimize the number of segments in the chosen path Avoid detours
Minimize the number of nonorthogonal intersections Minimize negative externalities (e.g., pollution)
Minimize actual or percieved cost Maximize aesthetics

Table 1: Path-selection Heuristics

Human spatial memory is organized hierarchically in nested levels of detail. This

organization influences path planning and navigation behavior (Wiener and Mallot,

2003). In a study with human subjects in a virtual environment, environmental re-

gions that represent this hierarchical organization were shown to be perceived and

encoded very early in the process of learning an environment (Wiener et al., 2004).

The study observed the use of three path planning strategies: the fine-to-coarse plan-

ning heuristic, the least-decision-load strategy, and the cluster strategy. It found that

a linear combination with equal weights was able to predict the subjects’ naviga-

tion behavior. The fine-to-coarse planning heuristic makes a detailed plan for close

surroundings and an abstract plan (at the region level) for distant locations. The

least-decision-load strategy plans a paths that minimizes complexity. The cluster

strategy, when faced with multiple goal locations, prefers to visit spatially clustered

targets first. It was argued that regional knowledge structures space and it also al-
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lows the employment of search strategies to overcome missing or imprecise spatial

knowledge. This conclusion was validated with participants in a physical replica of a

virtual environment (Wiener et al., 2009).

Another study of wayfinding behavior compared participants’ strategy preferences

in navigation through real-world multi-level buildings (Hölscher et al., 2006). The

study compared a central point strategy (reliance on paths through well-known parts

of the building), a direction strategy (reliance on paths that go first towards the

horizontal position of the goal), and a floor strategy (reliance on paths that go first

towards the vertical position of the goal). Participants preferred the floor strategy;

those that used it arrived at the goal with shorter average travel distance and times.

In a follow-up study, these strategies were evaluated in a multi-level multi-building

environment (Hölscher et al., 2009). In this setting, the participants reached their goal

more effectively when they first followed the direction strategy, because it was more

efficient to go to the correct building before the correct floor. This behavior seems

to reflect the observation by Wiener et al. (2004) that people perform hierarchical

planning across regions in the environment.

People also use spatial knowledge learned during navigation to inform future

wayfinding tasks. A shortcut is a metrically shorter path to a location, compared

to a previously known path to that same location. In an experiment with immersive

virtual reality, participants found shortcuts in the environment only when landmarks

were present (Foo et al., 2005). A follow-up study reaffirmed that people use land-

marks, rather than metric survey knowledge, to find shortcuts (Foo et al., 2007).

Several path planning heuristics have been observed for people who travel to multi-

ple locations. The nearest neighbor strategy is a heuristic that repeatedly chooses the

closest target from the current location until all the targets have been visited (Gärling

et al., 1988). When the goal is probabilistically located at one of several positions,
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the rich-target-first strategy states has participants visit the positions in order of the

likelihood that they contain the goal (Wiener et al., 2008). In another study, partic-

ipants were shown to use their background knowledge about the spatial relationship

between objects in a supermarket to plan a path to get to all the objects (Kalff and

Strube, 2009).

Once a plan was selected, one study found two heuristics that were used to ensure

correct traversal of the path: check if the perceived visual cues along the path conform

with the expected visual cues in the plan, and plan multiple alternative paths in case a

conflict arises (Spiers and Maguire, 2008). People also use heuristics when confronted

with an unexpected obstacle during execution of the plan. Subjects were shown a

path to a goal in a virtual maze and told to follow that path, but were then impeded

by an obstacle (Janzen et al., 2001). To return to the learned path, subjects who

had been shown the path from an egocentric perspective tended to use right angles to

avoid the obstacle, whereas subjects who had been shown the path from an allocentric

perspective preferred oblique-angled paths.

As previously described in Section 1.2, there are many environments where path

planning is very difficult. In those situations, people use a variety of heuristics to

arrive at their goal without a plan. First, people search for alternatives when faced

with a navigation decision. In a virtual maze environment, a study found that partic-

ipants followed three heuristic search strategies: enfilading, thigmotaxis, and visual

scan (Kallai et al., 2005). Enfilading moves back and forth in a small area of the en-

vironment. Thigmotaxis stays near a large object or on the periphery of an open area

during navigation as a safety mechanism in an unfamiliar environment. Visual scan

remains in a fixed position and turns in place to examine the environment. Another

study found that anxious human navigators used thigmotaxis (Kállai et al., 2009).
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Once the alternatives are clear or a person has decided to stop searching, several

heuristics are used to decide which alternative to select. In a study in a virtual indoor

environment, subjects moved toward a landmark if they knew that the goal was close

to that landmark (Waller and Lippa, 2007). A beacon response strategy triggers an

action when the navigator sees landmarks that spatially correspond with movement

along a learned path. For example, if on a previously travelled path a person turned at

a distinctive statue, the beacon response strategy would indicate that next time you

see the same statue you turn. A survey-based strategy uses learned survey knowledge

about the spatial relations between objects in the environment to decide the direction

towards a goal location when faced with a landmark. An early study in a virtual

driving simulator showed that participants followed either a beacon response strategy,

a survey-based strategy, or both (Aginsky et al., 1997). Another study in a virtual

maze with landmarks showed that participants initially preferred a beacon response

strategy but shifted to a survey-based strategy in later trials (de Condappa and

Wiener, 2016). The least-angle strategy is a decision-making heuristic in which a

person selects the direction most in line with the target’s direction at an intersection

in an unknown environment (Hochmair and Frank, 2000; Dalton, 2003). If the target

is not visible, however, then a person estimates the position and direction of the target

based on her perception and movement through the environment.

Spatial orientation has been used as a heuristic to determine the correct direction

in which to travel in an unknown environment (Lawton, 1996). Two heuristics that

maintain awareness of spatial orientation were observed in a study with two-year-old

children: geometric reorientation and beacon guidance (Lee et al., 2012). Geometric

reorientation reconciles the shape of the room as it is currently perceived with a

representation of the room as it was previously experienced from a specific, known

53



direction. Beacon guidance uses the known spatial relationship between a landmark

and the goal to infer spatial orientation.

People also use their frame of reference for decision making. One study examined

the strategy used by subjects in a task to identify the direction of the initial position

after navigation through a virtual tunnel (Gramann et al., 2005). Subjects showed

preference for either egocentric or allocentric frames of reference to solve the task.

They were also able to switch between reference frames and still accomplish the task.

Another study also demonstrated that participants were able to use both frames of

reference to navigate through a maze to a goal from different initial locations in the

maze, and could switch between the strategies spontaneously (Iglói et al., 2009). That

study also suggested that people can switch between the reference frames because they

learn both representations simultaneously.

Several characteristics impact human navigation abilities and the heuristics they

chose. A sense of direction is an awareness of one’s location or orientation as an

individual moves around the environment. It has been shown that individuals dif-

fer in their sense of direction and that these differences impact the heuristics they

use in wayfinding (Cornell et al., 2003). Individuals with a good sense of direction

were shown to use one of two strategies as they retraced a learned route through an

outdoor environment: cardinal directions as a reference system, and landmarks to

orient and localize (Kato and Takeuchi, 2003). The results also suggested that the

same individuals could shift flexibly between strategies. Another study found that

individuals with a good sense of direction learn routes in fewer trials and rely on

visuospatial working memory (Baldwin and Reagan, 2009). A good sense of direc-

tion may allow individuals to minimize their localization error and thus improve their

navigation abilities.

54



Navigational abilities and heuristics have also been observed to vary across demo-

graphics such as age and gender (Wolbers and Hegarty, 2010). One classic setting to

evaluate navigational behavior is the Morris Water Task (MWT) in which an agent

has to find a hidden platform in a circular arena (Morris et al., 1982). One study in a

virtual MWT found that older adults prefer an egocentric strategy, whereas younger

adults were evenly split between egocentric and allocentric strategies (Rodgers et al.,

2011). Another study in a virtual environment found that older participants needed

more time to form a cognitive map, and were slower and made more errors when they

used their cognitive map (Iaria et al., 2009).

This section has reviewed the foundations of human reasoning and decision mak-

ing. It has also discussed the kinds of spatial knowledge that people acquire dur-

ing navigation and the internal representations they create with that knowledge. It

described heuristics used by people for path planning and decision making during

navigation without a plan. Finally, it summarized human factors that impact the

heuristics used for navigation. The next section explores computational models for

these human behaviors.

4.2 Cognitive Models of Human Navigation

Cognitive models seek to simulate observed human behavior with a computational

system or algorithm. To produce the desired behavior, these simulations use such

methods as logic, rules, determinism, and probability. Cognitive scientists then test

them in artificial settings. For example, early work modeled how people plan as a

series of decisions-making modules that opportunistically gave suggestions at different

levels of abstraction (Hayes-Roth and Hayes-Roth, 1979). This work’s paradigmatic

approach presented a theoretical explanation for planning, proposed a cognitive model

for the theoretical basis, executed the model on a computer, and then compared its

55



behavior with that of a human subject. This section discusses cognitive models of

human navigation and reviews some autonomous robot navigation systems inspired

by human behavior.

Early approaches simulated representations similar to cognitive maps. The TOUR

model for multiple representations in a cognitive map incorporates route knowledge,

path integration, and survey knowledge (Kuipers, 1978). TOUR found paths in a

partially observable environment from an allocentric reference frame. Later work

expanded TOUR into the Spatial Semantic Hierarchy (SSH) model (Kuipers, 2000).

SSH models a cognitive map with hierarchical metric and topological representations.

It also incorporates representations of partial knowledge and uncertainty. SSH has

been implemented on simulated robots in indoor and outdoor environments and on

a physical robot in an office environment. The Prototype, Location, and Associative

Networks (PLAN) model also represented a cognitive map with a hierarchical struc-

ture, but from an egocentric perspective of the environment (Chown et al., 1995).

Some cognitive models have used a graphical approach to represent spatial knowl-

edge. A formal logic-based model of the wayfinding process incorporated image

schemata (recurring mental patterns that structure space) with affordances (what

an object or environment enables people to do) into a wayfinding graph (a weighted,

labeled directed graph of the state space) (Raubal and Worboys, 1999). A second

model relied on route knowledge, where a route was a series of directed segments

from one place to another and routes were connected to form a graph (Werner et al.,

2000). A third study modeled navigation behavior with ACT-R, a general cognitive

architecture that simulates human memory, information processing, and reasoning. It

integrated a route-based representation to learn new environments, and a map-based

representation to improve route following (Zhao et al., 2011).

56



A cognitive model for heuristic navigation decisions used a 2D virtual environment

with static and dynamic obstacles (Gordon and Subramanian, 1997). It decomposed

the overall task to reach the goal into the smaller tasks of either avoiding an obstacle or

moving towards the goal, and it modeled each action’s consequences for each smaller

task. The model heuristically determines which smaller task the agent currently faces

(i.e., whether or not the agent is close to an obstacle) and then selects an action to take

for that task based on its action-consequence model. A follow-up study confirmed that

people use a heuristic to recognize switches between tasks, and introduced a model of

how that strategy shifts over time with experience in the environment (Gordon et al.,

1998).

Biological and psychological explanations for human navigation can be useful

starting points for autonomous robot navigation systems (Werner et al., 1997). One

approach is to learn and use cognitive maps and other internal representations. Early

work integrated a grid-based metric map with a topological map to adapt human-

like internal representations of the environment for mobile robot navigation (Thrun,

1998b). The grid-based map, constructed with an artificial neural network, used

Bayesian updating to determine the probability that a grid cell was occupied. To

generate topological maps, the grid cells were grouped into connected regions. Thrun

also adapted the human use of landmarks to guide navigation (Thrun, 1998a). In this

work a mobile robot used a Bayesian approach to learn the position of landmarks in

the environment, trained an artificial neural network to recognize the learned land-

marks, and then used the landmarks for localization.

SemaFORR is a recent system that incrementally learns a spatial model during

travel and uses commonsense qualitative spatial reasoning (Epstein et al., 2015). Its

model relies on spatial affordances, abstract representations of the environment, to

simulate a mental model similar to a cognitive map. SemaFORR has three kinds
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of spatial affordances: regions (obstruction-free areas), trails (a shorter path derived

from an actually travelled path), and conveyors (frequently visited areas of the en-

vironment). SemaFORR’s decision-making mechanism combines multiple heuristics

based on commonsense, the robot’s sensor readings, and the spatial model to select

an action.

This chapter has reviewed human heuristics for navigation and wayfinding. It

discussed the internal representations (e.g., a cognitive map) that people create to

reduce their cognitive load and the external cues in the environment that people use

to make decisions. It also described cognitive models that computationally simulate

human navigation and wayfinding behavior. Although some work has successfully

modeled human navigation, a significant challenge for cognitive scientists is that it

is difficult to account for individual differences. Despite this, behavioral experiments

have gleaned some insights on human navigation behavior. This chapter has also

reviewed several autonomous robot navigation systems inspired by human navigation

behavior. Unlike metaheuristic methods for path planning that seek to find the short-

est path in the least amount of time, these systems seek to exploit human knowledge

and strategies to improve autonomous robot navigation. The next chapter suggests

future work at the intersection of metaheuristics and cognitive models.
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5. Conclusion

This paper has reviewed two significant research areas in autonomous robot naviga-

tion: metaheuristics and cognitive models. Most approaches are evaluated in simpli-

fied simulated environments that ease the hardware challenges of physical robots and

reduce computational complexity. Ultimately, however, autonomous robot navigation

systems must operate in the real world and contend with observability, multiagency,

dynamism, continuity, and terrain. Future work must address these challenges in a

real-world environment.

Metaheuristics are broadly applicable methods that use a heuristic strategy. Simu-

lated annealing and tabu search are single-solution metaheuristics that use a heuristic

to supervise the trade-off between exploration and exploitation. Although these al-

gorithms have been adapted for path planning, they have not seen widespread use in

the real world or sustained research in the literature.

Population-based metaheuristics have been used more frequently for path plan-

ning which suggests that they are able to find better solutions more efficiently than

single-solution metaheuristics. Evolutionary algorithms use heuristics inspired by

Darwinian principles, while swarm algorithms use heuristics inspired by the behavior

of animals to search for optimal solutions. Both incorporate aspects of hill-climbing

and randomization, and sometimes combine global search with local search. While

some approaches have successfully navigated in both simulated and real-world envi-

ronments, no single method has proved superior overall.

Population-based metaheuristics have several disadvantages. First, there is no

guarantee that an optimal solution will be found in finite time, but this is not an

issue in practice because in most cases a satisfactory solution suffices. Second, these

methods can be computationally and memory intensive, although rapid advances in
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hardware and its utilization partially offset this issue. Finally, the parameters of these

approaches must be tuned by hand to enable good performance for path planning.

This remains a significant issue and a major roadblock to widespread use of these

approaches. To address it, there has been some work towards automated parameter

tuning for heuristic algorithms, however, not specific to navigation or metaheuris-

tics (Hoos, 2011).

Another approach to resolve the shortcomings of population-based metaheuristics

has been to combine them with each other or with other methods. Although these

hybrid metaheuristics draw upon the strengths of their components, it is difficult to

compare them and identify the best because they have been tested with different

numbers and types of robots in different and mostly simulated environments. No

single hybrid metaheuristic has seen sustained research, which suggests that the field

is still in its early stages and that many different methods will be tried and tested. At

this point, significant research should be evaluated in real-world environments with

physical robots to investigate the feasibility of actual deployment.

This survey also reviewed results from cognitive science that seek to explain and

simulate human navigation and wayfinding. Studies show that people use both in-

ternal and external information and a variety of heuristics for decision making and

reasoning during navigation. People also switch between these strategies within a

task and across different tasks. Many metaheuristic methods must make simplify-

ing assumptions about the environment to be able to plan paths successfully, even

though people successfully navigate in the real world. Potential future work could

synergize the research on metaheuristics and cognitive models to create more powerful

autonomous robot navigation systems.

In conclusion, this paper has reviewed metaheuristic approaches for path plan-

ning and cognitive models of human navigation. Although there has been progress
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towards autonomous robot navigation systems with these approaches, work remains

to overcome their challenges. Potential future work could combine these approaches

to produce a more robust system for autonomous robot navigation.
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Appendix: Hybrid Metaheuristics

Metaheuristics in the tables are abbreviated as Ant Colony Optimization (ACO), Artificial Bee Colony (ABC), Bacterial

Evolutionary Algorithm (BEA), Bat Algorithm (BA), Biogeography-based Optimization (BBO), Cuckoo Search (CS),

Differential Evolution (DE), Evolutionary Programming (EP), Genetic Algorithm (GA), Gravitational Search (GS),

Memetic Algorithm (MA), Particle Swarm Optimization (PSO), and Simulated Annealing (SA).

Approaches Metaheuristics
Number
of
Robots

Robot
Type

Environment Evaluation

Duan et al. (2010) ACO & DE Single UAV Static Simulated
Wang et al. (2012c) DE & CS Single UAV Static Simulated
Fu et al. (2013) DE & PSO Single UAV Static Simulated
Roberge et al. (2014) GA & PSO Single UAV Static Simulated
Wang et al. (2016) DE & BA Single UAV Static Simulated
Châari et al. (2012) GA & ACO Single Robot Static Simulated
Mo and Xu (2015) PSO & BBO Single Robot Static Simulated
Contreras-Cruz et al. (2015) ABC & EP Single Robot Static Simulated & Real-World
Botzheim et al. (2012) MA & BEA Single Robot Static Simulated & Real-World
Das et al. (2016a) DE & PSO Multiple Robot Static & Dynamic Simulated & Real-World
Das et al. (2016b) PSO & GS Multiple Robot Static & Dynamic Simulated & Real-World

Table A1: Dual Metaheuristic Approaches
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Approaches Metaheuristic Other Method

Number

of

Robots

Robot

Type
Environment Evaluation

Alvarez et al. (2004) GA Dynamic Programming Single
Underwater

Vehicle
Dynamic Simulated

Arantes et al. (2016) GA Linear Programming Single UAV Static Simulated

Wu et al. (2006) GA Rough Sets Single Robot Static Simulated

Rakshit et al. (2013) MA & DE Reinforcement Learning Multiple Robot Static Simulated & Real-World

Masehian and

Sedighizadeh (2010a)
PSO Probabilistic Roadmap Single Robot Static Simulated & Real-World

Masehian and

Sedighizadeh (2010b)
PSO Probabilistic Roadmap Single Robot Static Simulated

Zhang et al. (2013) PSO Chaotic Search Single UAV Static Simulated

Xu et al. (2010) ABC Chaotic Search Single UAV Static & Dynamic Simulated

Cheng et al. (2014) PSO Chaotic Search Single UAV Static & Dynamic Simulated

Garcia et al. (2009) ACO Fuzzy Logic Single Robot Static & Dynamic Simulated

Li et al. (2006) GA Fuzzy Logic Single Robot Static & Dynamic Simulated

Kuo et al. (2016) PSO APF & Fuzzy Logic Single Robot Static Simulated & Real-World

Raja et al. (2015) GA APF Single Rover Static Simulated & Real-World

Miao et al. (2011) GA APF Single Robot Static Simulated

Cliff et al. (1993) GA Neural Network Single Robot Static Simulated

Gao and Tian (2007) SA Neural Network Single Robot Static Simulated

Table A2: Metaheuristic and Other Method Approaches
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Kállai, J., Karádi, K., and Feldmann, Á. (2009). Anxiety-dependent spatial naviga-
tion strategies in virtual and real spaces. Cognitive processing, 10(2):229–232.

Kallai, J., Makany, T., Karadi, K., and Jacobs, W. J. (2005). Spatial orientation
strategies in morris-type virtual water task for humans. Behavioural brain research,
159(2):187–196.

Karaboga, D. and Basturk, B. (2007). A powerful and efficient algorithm for numerical
function optimization: artificial bee colony (ABC) algorithm. Journal of Global
Optimization, 39(3):459–471.

Kato, Y. and Takeuchi, Y. (2003). Individual differences in wayfinding strategies.
Journal of Environmental Psychology, 23(2):171–188.

70



Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In IEEE In-
ternational Conference on Neural Networks, 1995. Proceedings., volume 4, pages
1942–1948. IEEE.

Kennedy, J., Kennedy, J. F., Eberhart, R. C., and Shi, Y. (2001). Swarm intelligence.
Morgan Kaufmann.

Khaksar, W., Hong, T. S., Khaksar, M., and Motlagh, O. R. E. (2012). Sampling-
based tabu search approach for online path planning. Advanced Robotics, 26(8-
9):1013–1034.

Kirkpatrick, S., Gelatt, C., and Vecchi, M. (1983). Optimization by simulated an-
nealing. Science, 220:671–680.

Klatzky, R. L. (1998). Allocentric and egocentric spatial representations: Definitions,
distinctions, and interconnections. In Spatial cognition, pages 1–17. Springer.

Koenig, S. and Likhachev, M. (2002). D* lite. In Proceedings of the AAAI Conference
of Artificial Intelligence (AAAI), pages 476–483.

Koenig, S., Likhachev, M., and Furcy, D. (2004). Lifelong planning a. Artificial
Intelligence, 155(1):93–146.

Kok, K. Y. and Rajendran, P. (2016). Differential-evolution control parameter opti-
mization for unmanned aerial vehicle path planning. PloS one, 11(3):e0150558.

Korf, R. E. (2014). Search: A survey of recent results. In Exploring Artificial Intelli-
gence: Survey Talks from the National Conferences on Artificial Intelligence, page
197. Morgan Kaufmann.

Koza, J. R. (1992). Genetic programming: on the programming of computers by means
of natural selection, volume 1. MIT press.

Kuipers, B. (1978). Modeling spatial knowledge. Cognitive science, 2(2):129–153.

Kuipers, B. (2000). The spatial semantic hierarchy. Artificial intelligence, 119(1-
2):191–233.

Kuo, P.-H., Li, T.-H. S., Chen, G.-Y., Ho, Y.-F., and Lin, C.-J. (2016). A migrant-
inspired path planning algorithm for obstacle run using particle swarm optimiza-
tion, potential field navigation, and fuzzy logic controller. The Knowledge Engi-
neering Review, pages 1–17.

Latini-Corazzini, L., Nesa, M. P., Ceccaldi, M., Guedj, E., Thinus-Blanc, C., Cauda,
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