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Abstract

A key task in human-robot collaboration is collaborative navigation, where an au-

tonomous mobile robot and a human companion travel together to a shared desti-

nation. This proposal focuses on three challenges in collaborative navigation: how

to tailor a robot’s behavior to its experience, how to ensure the human companion’s

comfort with and trust in the robot’s behavior, and how the robot can explain its

decision making in natural language. Of course, it is not feasible to hard code each

possible situation that the robot may face. Instead, to address the first challenge,

the proposed approach learns to generalize the robot’s experiences into salient sit-

uations, and then learns specialized decision-making strategies for each of those

situations. To address the second challenge, this proposal hypothesizes that a cog-

nitive basis for a robot’s decision making will result in natural interaction with

people. To that end, the proposed work incorporates decision-making rationales

from cognitive science and human-robot interaction, a novel voting-based multi-

objective path planner inspired by human path-planning behavior, and an original

metaheuristic based on human search-and-rescue behavior as a cognitively-based

alternative to A* search. Finally, to address the third challenge, this proposal de-

scribes an innovative method to explain navigation decisions in natural language.
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Experiments for evaluation and human-subject studies are outlined. The potential

contributions of this work have broad implications for human-robot collaboration

and for machine learning.

Keywords: Autonomous robot navigation, human-robot collaboration, situated

cognition, weight learning
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1. Introduction

Autonomous robots are artificial, mobile, mechanical agents that are increasingly

prevalent in modern society. Eventually they will be expected to complete tasks

independently alongside and in collaboration with people (Bauer et al., 2008). These

robots will navigate as they perform such tasks in factories, warehouses, offices, and

homes (Kruse et al., 2013). In autonomous robot navigation a robot moves through

an environment from one location to another. In contrast, in collaborative navigation

an autonomous robot and a person travel together to some destination. Modern robot

navigators are not focused on collaborative navigation and their opaque underlying

architectures may be difficult to understand. The work proposed here addresses

these issues. It draws inspiration from three lines of research: metaheuristics (high-

level heuristic techniques), cognitive models (computational simulations of human

behavior), and models of human-robot interaction.

The thesis of this proposal is that, in complex and diverse environments,

an autonomous robot can improve both its navigation performance and its

impact on human collaborators when it recognizes and adapts to situations

through a properly balanced, diverse set of transparent rationales. In a

situation, a robot makes a decision in a given environment given its capabilities,

its current sensor readings, and its knowledgebase (Giannopoulos et al., 2014). In

traditional path planning, a decision’s complexity is defined by its branching factor,

the number of actions the robot can take in any given state. A situation, however,

is richer; it also considers the robot’s spatial abilities and decision-making strategies,

environmental factors, and other information available in its knowledgebase. For

example, a situation may be a place in the environment similar to other previously

visited places, such as when the robot faces a corner or stands in a doorway.
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Because planning an optimal path in a non-trivial environment is NP-hard, both

people and computational approaches for navigation use heuristics, efficient strategies

that can often solve a problem (Pearl, 1984; Canny, 1988). Human navigators use

multiple heuristics and change their strategy across and within tasks (Iaria et al.,

2003). Similarly, computational methods, such as metaheuristics, use a heuristic

strategy to solve problems and combine or select among different heuristics. Neither

heuristic-based computational approaches nor models of human behavior, however,

have addressed situation-specific approaches. A situated-decision strategy combines

heuristics, metaheuristics, and/or hybrid metaheuristics to produce an approximate

solution in response to a particular situation. Thus, two novel ideas can be inves-

tigated within the context of collaborative navigation: how to identify unique and

meaningful situations, and how to identify an appropriate situated-decision strategy.

At a high level, this proposed work will allow a robot to identify its current situa-

tion, use a situated-decision strategy to decide which action to take, and communicate

this understandably to its human collaborator. This proposed work targets three re-

search goals:

• Construct and implement methods to learn and identify situations. These meth-

ods will group the robot’s experiences into meaningful, useful clusters, and ef-

ficiently classify new experiences.

• Construct, implement, and evaluate situated-decision strategies based on meta-

heuristics, weight learning, cognitive modeling, and path planning.

• Implement and evaluate natural language generators to explain navigation de-

cisions, and situated-decision strategies.

The potential significance of this proposed work is threefold: it will allow a robot to

learn to specialize its behavior based on its context, it will learn to combine a variety

of decision-making rationales, and it will improve the robot’s ability to communicate
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with people about its behavior and its perception of the environment. This proposal

draws inspiration from human navigation behavior; it allows a robot to represent and

reason about space similarly to the way people do, and thereby facilitates human-

robot collaboration (Kennedy et al., 2007). The proposed work combines diverse

rationales and seeks to balance reactivity with deliberation and to balance exploration

with exploitation. Furthermore, enriched communication potentially improves human

comfort with and trust in the robot. The resultant system is expected to be more

robust to real-world challenges. This work will be evaluated both on computational

performance and on human impact.

My preliminary work has formulated natural-language explanations for the robot’s

navigation decisions and navigation plans. I have contributed to the development of

MengeROS, a system that simulates both a crowd of pedestrians and a robot, that will

be used to evaluate the proposed work in a variety of test scenarios. Also, I contributed

to a novel Bayesian approach for path planning in a crowded environment.

• Korpan, R., Epstein, S. L., Aroor, A., and Dekel, G. (2017). Why: Natural
explanations from a robot navigator. In Proceedings of AAAI 2017 Fall Sym-
posium on Natural Communication for Human-Robot Collaboration

• Korpan, R. and Epstein, S. L. (2018). Toward natural explanations for a robot’s
navigation plans. In Proceedings of Workshop on Explainable Robotic Systems
at HRI 2018

• Aroor, A., Epstein, S. L., and Korpan, R. (2017). MengeROS: A Crowd Sim-
ulation Tool for Autonomous Robot Navigation. In Proceedings of AAAI Fall
Symposium on Artificial Intelligence for Human-Robot Interaction, pages 123–
125. AAAI

• Aroor, A., Epstein, S. L., and Korpan, R. (2018). Online learning for crowd-
sensitive path planning. In Proceedings of the 17th Conference on Autonomous
Agents and MultiAgent Systems, AAMAS ’18. International Foundation for Au-
tonomous Agents and Multiagent Systems

The remainder of this chapter formalizes the robot’s task, collaborative naviga-

tion. It begins with fundamental concepts and defines key terms. It then discusses

challenges related to the proposed work.
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1.1 Definitions

A robot is an embodied agent, one that interacts with the environment through its

physical body. The robot perceives its environment through sensors and acts upon

that environment with actuators (Russell and Norvig, 2009). Examples of robot sen-

sors include cameras and lasers; an example of a robot actuator is a motor. Actuator

error occurs when actuators do not execute an action precisely. Sensor error occurs

when there is noise in the sensors’ signal.

Situated cognition is a psychological theory; it posits that knowledge is inseparable

from the activity, context, and culture in which it was learned (Brown et al., 1989;

Clancey, 1997). Situated cognition argues that a robot’s knowledge emerges from its

interaction with the environment.

At any instant, a mobile robot’s pose hx, y, ✓i in its 2D environment is its location

hx, yi and its orientation ✓ with respect to some allocentric coordinate system. A

robot navigation problem is P = hS, I, A,Gi where

• S is a set of states that represent an instance of the environment. Each state

s = hx, y, ✓i 2 S represents a possible robot pose.

• I ✓ S is a set of initial states, poses at which the robot may begin.

• A is a set of possible actions from which the robot can select. Each action a 2 A

is intended to change the robot’s pose from state s to another state s0.

• G(s) is a Boolean goal test that returns true if the robot’s current location is a

target (a location t = hx, yi).
For example, the initial state may be the robot’s pose at a charging station or at

the entrance to a building. The robot uses its actuators to perform actions (e.g., a

forward movement or a turn). If an action fails or is a deliberate pause, s may be the
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same as s0. (A glossary that summarizes the notation used in this paper begins on

page 109, before the references.)

Given a navigation problem P = hS, I, A,Gi, a path p is a finite ordered sequence

of interleaved states and actions hs1, a1, s2, a2, s3, . . . , sy�1, ay�1, syi. An example

of a path is s1 = initial pose, a1 = move forward two feet, s2 = next pose, a2 = turn

left 90�, s3 = next pose, and a3 = move forward five feet. The robot seeks a solution

to P , a finite path p = hs1, a1, s2, . . . , ak�1, ski from an initial state s1 2 I to a goal

state sk, where G(sk) = True.

Step cost is a metric defined on an action a in state s. Examples of step costs

include the amount of energy consumed, the time taken, or the distance traveled. Step

cost may be uniform across all state-action pairs, or may be defined in the context of

the problem. The path cost of path p is the sum of the step costs of all the actions

along p, for example, the total power consumption or distance traveled.

The search space H for a navigation problem P is the set of all paths that start

at an initial state. Given a step cost metric, an optimal solution o is a solution in

the search space with minimum path cost: o = argmin
p2H

PathCost(p). An optimal

solution may, for example, be the fastest or the shortest path from the initial position

to the target. A satisfactory solution is a solution that is good enough with respect

to some domain-specific criterion, and thus is less likely to require prohibitive com-

putational resources (Poole and Mackworth, 2010). Satisfactory solutions are usually

suboptimal, such as a sufficiently short path or a sufficiently fast one. Search explores

H to find a solution.

A plan P is a path that can be proved to be a solution before it is executed. A

waypoint is a location extracted from a state in a plan. Henceforward, a plan refers to

a finite ordered sequence of waypoints, which excludes the orientation for each state

and the actions between states. Such a plan represents the locations through which
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the robot intends to pass during travel on its way to a target t. Path planning is the

search for a plan that minimizes some domain-specific criterion, such as travel time,

travel distance, or resource consumption (Fong et al., 2015).

An autonomous robot navigation system (robot controller) can plan ahead to reach

its target or make its decisions reactively, one action at a time. A modern robot

controller does both. Deliberation formulates plans in advance to capitalize on the

robot’s knowledge, while reactivity senses and responds to the robot’s environment.

A hybrid robot controller integrates the flexibility and robustness of reactivity with

the foresight of deliberation. The next section discusses challenges related to the

proposed work.

1.2 Challenges

In real-world navigation there are infinitely many states, paths can double back on

themselves to form cycles, and many paths do not reach a goal state. Thus the search

space may contain infinitely many paths that start at a given s 2 I. Because computa-

tion of an optimal plan in such a large search space is intractable, heuristic techniques

seek satisfactory ones instead. A particular challenge for heuristics, however, is pre-

mature convergence, when search halts at a poor quality solution. Henceforward, the

approaches discussed in this proposal all seek satisfactory solutions. Another chal-

lenge for path planning is that, although a plan is proved to be a solution before it

is executed, actuator error may cause a robot to deviate from its plan and follow a

different path.

This proposal does not address some important challenges to robot navigation:

localization, mapping, obstacle avoidance, and motion control. Localization requires

an autonomous robot to detect its current pose despite sensor error. Mapping requires

the robot to construct a metric map of an unknown environment. Obstacle avoidance
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requires the robot to move through its environment without collisions. Motion control

requires the robot to manipulate its actuators to perform intended actions despite

actuator error. This proposal builds upon state-of-the-art solutions to those challenges

and focuses instead on challenges specific to collaborative navigation.

A static environment does not change while a robot decides on an action. In

a dynamic environment, obstacles, other robots, people, and the structure of the

environment itself can all move or change over time. In a real-world environment a

robot must contend with these dynamics. A hybrid robot controller reactively repairs

or abandons its plan when people move or unanticipated obstacles appear, much the

way people experience and move through space (Spiers and Maguire, 2008). As a

result, the robot can plan a route to its goal, travel along that route, and manage the

unexpected. If the environment changes while the robot executes its plan, a hybrid

robot controller should react until it can resume its plan or formulate a new one. In

particular, the presence of people in the environment presents unique challenges to

collaborative navigation.

Most robot controllers do not consider their impact on people or adapt to human

behavior. Instead, they search for satisfactory solutions and treat people the same

way they treat other dynamic obstacles. A collaborative robot, however, must also

build trust with people, respect social norms, and produce human-like motion (Kruse

et al., 2013). In addition, a collaborative navigator must address the physical nature

of travel alongside a person, that is, it should maintain a sufficient level of comfort

and safety for its companion while it navigates (Rios-Martinez et al., 2015). Another

challenge to collaborative navigation is that the robot should adapt to an individual

person’s behavior. To the best of my knowledge, no single system has yet addressed

all of these challenges.
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The remainder of this proposal is organized as follows. Chapter 2 provides back-

ground and reviews related work on human-inspired and human-aware robot naviga-

tion, as well as metaheuristics and weight learning. Chapters 3 and 4 describe the

proposed work in more detail. Finally, Chapter 5 summarizes the expected contribu-

tions of this proposed work.
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2. Related work

Three areas of research are related to the proposed work: systems that take inspiration

from human behavior, systems designed to address travel in environments with people,

and metareasoning to improve heuristic-based learning. This chapter reviews each of

these to provide a context for the proposed work. Each section also discusses the gap

that my proposed work addresses.

2.1 Human-inspired robot navigation

Biological and psychological explanations for human navigation can be useful starting

points for robot controllers (Werner et al., 1997). Cognitive science, the study of the

mind and intelligence, includes spatial cognition, the study of navigation behavior and

spatial problem solving for navigation (Wolbers and Hegarty, 2010). Cognitive scien-

tists construct computational models that seek to explain human behavior (Frieden-

berg and Silverman, 2011). Because robust human navigation ability is well-studied,

this section first reviews results from spatial cognition research. It then describes

computational models of human navigation behavior, which provide a strong basis

for robot navigators in complex, dynamic environments. My proposed work will draw

from the work discussed in this section to learn more sophisticated spatial representa-

tions and incorporate peoples’ navigation strategies. The related methods described in

Chapter 3 and 4 seek to improve navigation performance, and make decision-making

rationales more transparent.

A decision is a choice among a set of alternatives; decision making selects an

alternative. Reasoning draws a conclusion from information to solve a problem or

make a decision (Leighton, 2004). People use heuristics to make fast and frugal

decisions, especially when they have limited time, knowledge, and computational
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power (Gigerenzer et al., 1999). Gigerenzer and colleagues propose three types of

heuristics: those that guide the search for alternatives, those that determine when to

stop the search, and those that make a decision given the results of the search. They

also suggest that people employ cognitive economy, that is, they tend to employ the

heuristic with the least cognitive cost.

The spatial environments where people navigate are complex and dynamic. Be-

cause people rarely have perfect information about the environment, they are unlikely

to make optimal decisions. Nonetheless, they travel through challenging environments

with good-enough decisions (Conlin, 2009). People use a variety of heuristics to search

for paths and to make decisions when confronted with unknown environments and

unanticipated obstacles. Most human navigation heuristics are triggered by either

external information in the environment or an internal signal.

People choose heuristics with respect to the problem they confront, in other words,

human behavior is goal-directed (Aarts and Elliot, 2012). Consider, for example, one

person who travels to a hospital emergency room and another who walks through a

park to enjoy the scenery around a lake at the center of the park. Both must navigate

from their current location to a target location, but each of them employs significantly

different strategies to solve that problem. In addition, a person’s navigation strategy

when she travels through an environment differs from her path-planning strategy and

from the way she gives route directions to someone else (Hölscher et al., 2011).

Within a particular navigation problem, a person also may apply different strate-

gies at different points in the task. Scans of brain activity suggest that people shift

between different strategies during a navigation task (Iaria et al., 2003). For example,

the person in the park may follow a trail at a leisurely pace but later leave the trail to

avoid a fallen tree. While on the trail, her strategy could be to walk at a normal pace

and stay in the center of the trail. When she leaves the trail to avoid the fallen tree,
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however, her strategy may change to move more slowly and more cautiously through

the brush. People can choose their strategies with respect to their overall goal, their

current state, and their environment. In other words, their behavior is situated.

People also acquire spatial knowledge as they navigate, and use it to reason and

to build internal representations. One type of spatial knowledge that can be used

to localize and plan paths is a landmark, an interesting and meaningful area in the

environment (Richter and Winter, 2014). As people move through an environment,

they also acquire route knowledge, an egocentric sequence of locations and landmarks

along a path, and survey knowledge, the spatial layout of the environment, including

relations between locations, from an allocentric perspective (Latini-Corazzini et al.,

2010).

A cognitive map is a compact, meaningful mental representation of an environ-

ment, built by a person as she moves through that environment (Golledge, 1999).

Rather than try to remember and reason over all the sensory input from her environ-

ment, a person reasons from a cognitive map to reduce her cognitive load. A cogni-

tive map incorporates landmarks, route knowledge, and survey knowledge (Tversky,

1993). Landmarks represent locations in the map, routes represent lines that con-

nect locations in the map, and survey knowledge indicates the spatial relations in

the map. Although it has been suggested that cognitive maps use metric distances

and angles (Gallistel, 1990), more recent work indicates that cognitive maps have a

non-metric, qualitative topological structure (Foo et al., 2005). Other recent work

suggests that people use a cognitive graph with labeled metric information (Chrastil

and Warren, 2014; Warren et al., 2017). The exact nature of cognitive maps remains

an important open problem in spatial cognition (Weisberg and Newcombe, 2016).

People also use external information, such as maps, photos, verbal descriptions,

or route directions, as heuristics to form an internal representation of the environ-
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ment prior to navigation (Pazzaglia and De Beni, 2001). The use of such external

information, however, can increase their cognitive load as people try to reconcile the

external information with their own perception of the environment. Moreover, peo-

ple’s experience and knowledge from other, similar environments contribute to their

internal representation in a new environment. For example, a person who enters an

unknown building assumes that her previous experience of navigation in buildings

and knowledge about building conventions holds there (e.g., that rooms are accessed

from corridors and that elevators facilitate travel to different floors).

Cognitive models seek to simulate observed human behavior with a computational

system or algorithm. To produce the desired behavior, these simulations may use

logic, rules, determinism, and probability. Cognitive scientists then test the simula-

tion in artificial settings. Early cognitive models simulated representations similar to

cognitive maps. The TOUR model for multiple representations in a cognitive map in-

corporated route knowledge, path integration, and survey knowledge (Kuipers, 1978).

TOUR found paths in a simulated, partially observable environment with relation to

an external coordinate system. Later work expanded TOUR into the Spatial Semantic

Hierarchy (SSH) model (Kuipers, 2000). SSH modeled a cognitive map with hierar-

chical metric and topological representations. It also incorporated representations of

partial knowledge and uncertainty. SSH has been implemented as a robot controller

on simulated robots in indoor and outdoor environments and on a physical robot in

an office environment (Beeson et al., 2010). The Prototype, Location, and Associa-

tive Networks (PLAN) model also represented a cognitive map with a hierarchical

structure, but from the perspective of the robot (Chown et al., 1995).

Some cognitive models have used graphs to represent spatial knowledge. A for-

mal, logic-based model incorporated image schemata (recurring mental patterns that

structure space) with affordances (what an object or environment enables people to
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do) into a weighted, labeled directed graph of the state space (Raubal and Worboys,

1999). Another model described a route as a series of directed segments from one

place to another, and connected routes to form a graph (Werner et al., 2000). Yet

another model used ACT-R, a general cognitive architecture that simulates human

memory, information processing, and reasoning (Zhao et al., 2011). It integrated a

route-based representation to learn new environments, and a map-based represen-

tation to improve a robot controller’s ability to follow its learned routes and learn

shortcuts.

A cognitive model for heuristic navigation to reach a target addressed a two di-

mensional simulated environment with static and dynamic obstacles (Gordon and

Subramanian, 1997). It decomposed the overall task into two situations (avoid an

obstacle or move toward the target) and modeled each action’s consequences for each

situation. The model heuristically determined which situation the robot currently

faced (i.e., whether or not the robot was close to an obstacle) and then selected an

action to take for that situation based on its action-consequence model. A follow-up

study confirmed that people used a heuristic to recognize when to switch between

situations, and introduced a model of how that strategy shifted over time with expe-

rience in the environment (Gordon et al., 1998).

To apply spatial cognition to robot navigation, one can learn and use cognitive

maps and other internal representations. Early work on a robot controller integrated

a grid-based metric map with a topological map, to adapt human-like internal rep-

resentations of the environment for the robot (Thrun, 1998b). The grid-based map,

constructed with an artificial neural network, used Bayesian updating to determine

the probability that a grid cell was occupied. The topological map partitioned the grid

cells into connected regions at narrow passages, such as doors. Thrun also adapted

the human use of landmarks to guide navigation (Thrun, 1998a). His Bayesian ap-
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proach learned the position of landmarks in the environment, trained an artificial

neural network to recognize the learned landmarks, and then used the landmarks for

localization.

SemaFORR is a more recent robot controller that uses commonsense qualitative

spatial reasoning and incrementally learns a spatial model during travel (Epstein

et al., 2015). It relies on spatial affordances, abstract representations of the environ-

ment, to construct a mental model that is similar to a cognitive map. SemaFORR

navigates with a combination of multiple heuristics based on commonsense, path

planning, the robot’s sensor readings, and its spatial model. This proposal builds

upon SemaFORR and its underlying cognitive architecture. SemaFORR is described

further in Chapter 3.

Cognitive models have also been used to examine behavior for groups of people.

One approach modeled a self-organized process for collective behavior among social

beings with four characteristics: positive feedback, negative feedback, random fluctu-

ations, and interactions among individuals (Moussaid et al., 2009). Positive feedback

encourages individuals to mimic the behavior of nearby individuals, with likelihood

proportional to the number individuals already engaged in the behavior. Negative

feedback counteracts the positive feedback loop and causes individuals to disengage

from the group’s behavior. A random fluctuation causes an individual to engage ran-

domly in a behavior. An interaction is a direct or indirect communication among

individuals that relays some information.

Other work has sought to explain pedestrian movement with two cognitive models:

trail formation and social force. The trail formation model describes the process by

which pedestrians construct common, heavily-used paths (pedestrian trails) in an

environment through indirect communication (Helbing et al., 1997). As a pedestrian

travels, she is attracted to an existing pedestrian trail in proportion to its closeness
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and intensity, a measure of the frequency of travel through an area by pedestrians.

For any given part of the environment, there is a maximum possible intensity, and the

intensity level decays over time. A pedestrian increases the intensity associated with

some part of the environment by travel through it. The social force model describes

the motion of a set of pedestrians (Helbing and Molnar, 1995). Each pedestrian has

an assigned velocity that is influenced by an attractive force toward her destination

and repulsive forces away from other pedestrians. The resultant force determines the

pedestrian’s movement. These two models have been shown to explain pedestrian

travel in the real world.

This section has discussed the internal representations (e.g., cognitive maps) that

people create to reduce their cognitive load, and the external cues in the environment

that people use to make decisions. It has also described cognitive models that compu-

tationally simulate human navigation behavior, and several robot controllers inspired

by that behavior. These systems seek to exploit human knowledge and strategies to

improve autonomous robot navigation. Only the work by Gordon and Subramanian,

however, hard-coded any potential situations, and no approach learned them. Fur-

thermore, most systems use only one navigation strategy. To the best of this author’s

knowledge no work has addressed or incorporated the psychological results that show

people’s behavior, knowledge, and learning is situated. This proposal addresses that

gap in Chapter 3. The proposed work also incorporates sophisticated spatial repre-

sentations into its spatial cognitive map and uses those representation to help make

decisions, similar to the way people use their cognitive maps during navigation. The

next section reviews approaches built to support human-robot interaction.

15



2.2 Human-aware and socially-aware robot navigation

Human-computer interaction (HCI) studies the design, evaluation, and implementa-

tion of computing artifacts that influence and interact with people (Lazar et al., 2017).

Human-robot interaction (HRI) studies the design, evaluation, and implementation of

robotic systems that influence and interact with people (Goodrich and Schultz, 2007).

Although HRI draws significantly from HCI, its artifacts are robots, agents embod-

ied in the real world (Scholtz, 2003). HRI research models how interactions between

people and robots impact the people, how they impact the robot, and how a change

in the behavior of the human or the robot affects the nature of their interactions.

This proposal draws inspiration from recent work in HRI. It incorporates models of

human social norms when it decides how to navigate, and methods to communicate

its decision-making rationales in human-friendly language. Ideally, this will allow a

robot to be accepted, trusted, and understood by a human collaborator.

Human-aware robot navigation incorporates three HRI factors into navigation

functionality: comfort, naturalness, and sociability (Kruse et al., 2013). Approaches

that focus on comfort seek to reduce people’s stress and annoyance with the robot

while they move safely. For example, a comfort-based approach might maintain some

specified distance from nearby people within the confines of the environment. Natural

approaches, on the other hand, try to produce human-like motion. For example, a

natural approach might learn and try to imitate typical human-motion trajectories.

Sociability addresses high-level cultural and societal norms (e.g., pass on the left).

Typical human-aware robot navigation focuses on traditional navigation performance

criteria (e.g., travel to a destination in satisfactory time and distance) but also mod-

ifies some aspect of the navigation system (e.g., action selection or path planning) to

consider one or more of these HRI factors. Ideally, a robot should be comfortable, nat-
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ural, and sociable. To maintain acceptable performance, however, most approaches

focus on only one of these qualities.

Reinforcement learning is a machine learning paradigm that learns how to act

through experience and a reward function. Inverse reinforcement learning learns

the reward function itself. A recent approach used inverse reinforcement learning

to produce human-like path trajectories for adaptive path planning in environments

crowded with many moving people (Kim and Pineau, 2016). When deployed on a

robotic wheelchair, the approach produced paths similar to human behavior.

One human-aware robot navigation approach learned to predict human trajecto-

ries from a human motion dataset, and used those predictions to plan safe and effi-

cient paths in simulation (Unhelkar et al., 2015). Another approach used a heuristic,

cognitively-inspired decision-making framework to produce human-like, safe, efficient

navigation in a static, simulated environment (Kirsch, 2016). Other work learned

a model of human motion, used it to predict how people would interact with the

robot, and used those predictions to plan a safe route in a simulated crowded envi-

ronment (Park et al., 2016).

While human-aware robot navigation primarily focuses on navigation performance,

socially-aware robot navigation focuses specifically on sociability as its primary goal

(Chik et al., 2016). These approaches draw upon research on social awareness, social

conventions, and proxemics, the study of interpersonal spatial distances between peo-

ple (Rios-Martinez et al., 2015). In proxemics, personal space is the space a person

actively maintains around herself; intrusion into that space causes discomfort (Hay-

duk, 1978). Empirically, one’s personal space is dynamic and situation specific (Hay-

duk, 1994). Proxemics also examines interpersonal space with respect to an activity,

to objects in the environment, and within groups of people. Socially-aware robot
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navigation incorporates proxemics so that robots follow social norms when people are

present.

One proxemics-based approach modeled a social-cost map around people and then

planned a path with this map (Talebpour et al., 2016). This approach was evaluated

in both simulation and the real world as a robot navigated among static and dynamic

people. Another approach modeled human personal and social space and used it

to avoid socially-unacceptable paths (Truong and Ngo, 2016). Evaluation both in

simulation and with a real robot demonstrated the robot’s ability to approach and

avoid individuals as well as groups of people. Another recent approach used real-

world data from human-human and human-robot interactions to model proxemics

probabilistically (Mead and Matarić, 2017). These proxemic models were used by a

reactive robot controller and a cost-based path planner to navigate around a person.

They produced slightly longer paths that increased average distance from the person.

A recent socially-aware approach classified and used the emotions of nearby peo-

ple to modify obstacle avoidance dynamically, both in simulation and on a real-world

robot (Jiang et al., 2016). Other work used Bayesian inverse reinforcement learning

to learn social norms in three large, simulated environments that varied in crowded-

ness (Okal and Arras, 2016). Another approach learned dynamic cost maps based on

observations of human pedestrians, and then used those cost maps to plan paths (Lu-

ber et al., 2012). Those paths were more similar to human paths than those from a

proxemics-based model.

Socially-aware robot navigation also uses communication to improve people’s com-

fort with a robot. Communication allows people to build a mental model of how the

robot perceives and reasons, and thereby helps to establish trust (Kulesza et al., 2013;

Bussone et al., 2015). Trust in and understanding of a learning system improved when

people received an explanation of why a system behaved one way and not another (Lim
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et al., 2009). One recent approach grounded perceived objects between the robot and

a person to build a mutual mental model, and then generated natural language de-

scriptions from it (Chai et al., 2016). Several other approaches have incorporated

semantic mapping to improve robot sociability (Charalampous et al., 2017). These

maps allowed the robot to perceive and describe the environment similarly to the way

people do.

Another area of research is the production of natural descriptions of a robot navi-

gator’s behavior. Previously, only detailed logs of the robot’s experience were available

to trained researchers (Landsiedel et al., 2017; Scalise et al., 2017). In more recent

work, natural language descriptions of a robot’s travelled path addressed abstrac-

tion, specificity, and locality (Rosenthal et al., 2016; Perera et al., 2016). A similar

approach generated path descriptions to improve sentence correctness, completeness,

and conciseness (Barrett et al., 2017). Those approaches, however, used a labeled

map to generate descriptions and did not explain the robot’s reasoning. Other work

visually interpreted natural-language navigation commands with a semantic map that

showed the robot’s resulting action (Oh et al., 2016). This proposal is restricted to

question answering in natural language, covered in Chapter 4, without dialogue.

This section has discussed human-aware robot navigation approaches that incor-

porate comfort, naturalness, and sociability. It also described socially-aware systems

that seek to emulate social norms and human proxemics. Although some recent ap-

proaches in human-aware navigation have successfully incorporated HRI principles,

a significant challenge is the incorporation of all such criteria without a reduction

in navigation performance. There is, moreover, little work on the use of cognitive

models for human-aware navigation. This proposal addresses that gap in Chapter 3.

Although there has been work on human-robot communication to describe a robot’s

navigation, no work has directly addressed explanations of a robot controller’s under-
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lying decision making. The proposed work incorporates methods to explain a robot

controller’s decision-making rationales in human-friendly language in Chapter 4. The

next section reviews approaches that combine and balance heuristic rationales.

2.3 Metaheuristics, weight learning, and voting methods

Within machine learning and artificial intelligence, several areas focus on how to

combine multiple rationales to make better decisions. This proposal addresses meth-

ods to learn situations that combine acquired knowledge and sensor information, and

methods to learn situated-decision strategies that balance various decision-making

rationales. My proposed work in Chapter 3, on learning situated-decision strategies,

will draw from the related work on weight learning and voting methods described

here. It will also implement a novel metaheuristic, inspired by human behavior, as a

cognitively-based alternative for path planning. These new methods seek to improve

navigation performance, and make the robot’s behavior more natural.

A metaheuristic is a broadly applicable technique that uses a heuristic strategy

to obtain satisfactory solutions (Glover and Kochenberger, 2003). Metaheuristics are

typically used when only incomplete or imperfect information is available, when there

are limited computational resources, or when the problem is NP-hard. Metaheuristics

are not problem-specific or domain-specific; they seek satisfactory solutions through

efficient search. These methods are often tailored to avoid premature convergence,

with heuristics to mediate the trade-off between exploration and exploitation.

A single-solution metaheuristic maintains and improves one candidate solution

at a time as it explores the search space. Examples of single-solution metaheuris-

tics include simulated annealing (Kirkpatrick et al., 1983; Černỳ, 1985) and tabu

search (Glover, 1989, 1990). A population-based metaheuristic maintains and im-

proves a set of candidate solutions as it explores the search space. Many population-
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based metaheuristics have been inspired by biological mechanisms and the behavior

of organisms (Manikas et al., 2007). One broad category of population-based meta-

heuristics is evolutionary algorithms, which use mechanisms inspired by Darwinian

principles, such as survival of the fittest and natural selection, to guide search (Back,

1996). Another category is swarm intelligence metaheuristics, which are inspired by

the crowd behavior of organisms, such as ants and bees, or the movement of parti-

cles (Bonabeau et al., 1999). Some of these methods emulate animals’ search for food.

An example of a swarm intelligence metaheuristic is ant colony optimization (Dorigo

et al., 2006). Both evolutionary algorithms and swarm intelligence incorporate some

hill-climbing and randomization.

Although metaheuristics have been used for path planning, they have several

disadvantages. There is no guarantee that a satisfactory solution will be found in fi-

nite time. They can be computationally demanding and memory intensive, although

rapid advances in hardware and its utilization somewhat mitigate this issue. Finally,

the parameters of these approaches must be tuned by hand to enable good perfor-

mance. This remains a significant issue and a major roadblock to their widespread

use. To address it, there has been some work toward automated parameter tuning

for heuristic algorithms (Hoos, 2011), and very limited work specific to navigation or

to metaheuristics (Dobslaw, 2010).

Instead, researchers have sought to combine metaheuristics with each other or

with other methods. A hybrid metaheuristic combines multiple heuristics and/or

metaheuristics with other approaches, such as dynamic programming, machine learn-

ing, constraint programming, tree search, or problem relaxation (Blum et al., 2011).

Although hybrid metaheuristics draw upon the strengths of their components, it is

difficult to compare their performance for robot navigation because they have been

tested with different numbers and types of robots in different, mostly simulated, en-
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vironments. To contend with these issues, this proposal describes a novel population-

based metaheuristic for path planning. This new approach is inspired by human

behavior and will be evaluated against other metaheuristics and hybrid metaheuris-

tics in carefully designed experiments, as described in Chapters 3 and 4.

In parallel with the development of metaheuristics, machine learning has developed

methods to combine information from multiple sources. Each source is given a weight,

a number that represents the source’s contribution to the total combination. For

example, weights may be used to measure path cost with multiple metrics. Multi-

objective path planning is the search for a plan that optimizes more than one metric.

Metaheuristics have been commonly used for multi-objective path planning (Ahmed

and Deb, 2013; Mittal and Deb, 2007; Yang et al., 2016; Brintaki and Nikolos, 2005;

Geng et al., 2013; Liang and Lee, 2015; Masehian and Sedighizadeh, 2010). These

methods compute the step cost as a weighted sum of the metrics, although typically

these weights are equal. This proposal suggests an alternative approach to multi-

objective path planning in Chapter 3.

Weight learning selects a weight for each information source to satisfy desired

criteria (Wettschereck et al., 1997). Weight learning is fundamental to supervised

classification algorithms, where a labeled dataset is used to build a model (classifier)

and then that model predicts labels for new, unlabeled data. This proposal addresses

the use of weight learning to balance heuristics and metaheuristics.

A particular area of interest here is ensemble methods, machine learning algo-

rithms that build a set of classifiers and then combine their predictions to label new

data (Polikar, 2006). Ensemble methods have been shown to achieve higher classi-

fication accuracy than any individual classifier in the ensemble when the individual

classifiers are accurate (better than random choice) and diverse (make different classi-

fication errors) (Kuncheva and Whitaker, 2003). Bagging and boosting, two popular
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ensemble methods, train individual classifiers on subsets of the data (Dietterich et al.,

2000). In particular, AdaBoost trains a sequence of individual classifiers, where each

subsequent classifier increases its focus on data thus far inaccurately classified by the

earlier classifiers (Rokach, 2010).

Given a set of voters that cast a number of votes with respect to a set of candidates

(i.e., choices), a voting method selects the winning candidate (Van Erp et al., 2002).

Typically, an ensemble method uses voting to combine the predictions of its individual

classifiers and then selects an overall predicted label in a way that best reflects the

members of the ensemble. The goal of a voting method is to weigh the voters’ choices

to select a winning candidate that fairly balances all the voters’ opinions. In addition

to weight learning, the proposed work will incorporate voting methods to construct

situated-decision strategies.

The simplest and most commonly used voting methods are plurality, majority,

and run-off voting, described in Table 1. For example, under a plurality vote, an

ensemble method would classify a new instance as a member of the class predicted

most frequently by its individual classifiers. The drawback to these three approaches

is that they may succumb to the tyranny of the majority, where the majority overrides

the voice of the minority.

In performance-weighted voting each voter’s vote is weighted by some perfor-

mance criterion and then the winner is selected with some other voting method.

Performance-weighted voting may also be used by an ensemble method to select a

Voting Method Approach
Plurality Candidate with most votes is the winner
Majority Candidate with more than half the votes is the winner
Run-off Top two candidates in a plurality vote face off in a majority vote

Table 1: How majority-based voting methods select a winner
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Voting Method Approach
Condorcet Each candidate faces each other candidate in a majority vote.

The candidate that wins the most of these one-on-one votes is
the overall winner.

Copeland Each candidate faces each other candidate in a majority vote.
The candidate with the most net pairwise wins (one-on-one wins
minus one-on-one losses) is the overall winner.

Cup Sequences the candidates randomly from 1 to c and then holds a
series of majority votes between consecutive pairs of candidates.
The winner of the previous pair faces the next candidate in the
sequence (i.e., winner(i, i + 1) faces i + 2). The winner of the
final vote is the overall winner.

Simpson Each candidate faces each other candidate in a majority vote.
Each candidate’s performance in these pairwise votes is ordered
based on the number of votes received, from highest to lowest.
The candidate with the most votes received in its poorest pair-
wise performance is the overall winner.

Table 2: How preference-based voting methods select a winner

label. For example, each classifier’s vote could be weighted by its prediction accu-

racy, or, for a Bayesian approach, by its posterior probability given the training data.

Another criterion for classifiers in ensemble methods is based on the entropy of the

classifier’s predictions; it gives high weights to classifiers that usually predict a single

class. A challenge with performance-weighted voting is that it is difficult to select the

correct performance criterion for a given problem.

In an effort to weight voters’ opinions more fairly, other voting methods have

incorporated characteristics from them, such as preferences, ranking, approval, and

scoring. A voter has a preference between two candidates when it selects one over

the other according to some criterion (Coombs and Avrunin, 1977). A voter can rank

all the candidates according to its preferences (Flach, 2012). Table 2 describes voting

methods that use preferences to select a winning candidate (Rossi et al., 2011). Table

3 describes voting methods that use rankings to select a winner. Table 4 describes
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Voting Method Approach
Single transferable Candidate with a majority wins. Otherwise, eliminate the

candidate with the fewest votes and transfer those votes to
those voters’ second choice. Repeat until one candidate has a
majority and is the overall winner.

Borda Assign values to the c candidates based on the voters’ rank-
ings: a voter’s first choice receives a value of c� 1, its second
choice a value of c � 2, and so on. The candidate with the
largest total value is the winner.

Nanson Eliminate candidates with total Borda values below the aver-
age total Borda value until one winner remains.

Baldwin Eliminate the candidate with the lowest total Borda value
until one winner remains.

Coomb Candidate with a majority wins. Otherwise, the candidate
ranked last by the most voters is eliminated, this is repeated
until one candidate has a majority and is the overall winner.

Bucklin Candidate with a majority wins. Otherwise, voters’ second
choices are treated as additional votes. Repeat the addition
of lower-choice votes until a majority candidate wins.

Dodgson The overall winner is the candidate that wins a Condorcet
vote with the fewest interchanges in voters’ rankings.

Table 3: How ranking-based voting methods select a winner

voting methods where voters approve or disapprove each candidate rather than create

a ranking, and Table 5 describes voting methods that allow voters to indicate their

level of approval with a score.

Voting Method Approach
Approval Each voter approves between 1 and c�1 of c candidates. The

candidate with most approvals wins.
Veto rule Each voter vetoes between 1 and c � 1 of c candidates. The

candidate with fewest vetoes wins.
Inverse plurality Each voter vetoes one candidate. The candidate with the

fewest vetoes wins.

Table 4: How approval-based voting methods select a winner
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Voting Method Approach
Sum range Each voter gives a score within a given range to each candidate,

and the candidate with highest sum of scores wins.
Product range The candidate with the highest product of its scores wins.
Cumulative
scoring

Each voter distributes the same number of points among the
candidates. The candidate with the most points wins.

Table 5: How scoring-based voting methods select a winner

When candidates are ordered along a continuum according some criterion, a voter

can express its preferences for the candidates based on where each candidate lies

on that continuum. A voter has single-peaked preferences when its highest preference

goes to a single candidate, and its preferences for candidates on either side of the peak

decrease in proportion to their distance from the peak. When all voters have single-

peaked preferences and are ordered according to their most preferred candidate along

that continuum, the median voter theorem has shown that the candidate preferred

by the voter in the middle of the order is the winner (Congleton, 2004).

In case of ties in any of these voting methods, a problem-specific tie-breaking

rule may be applied to select an overall winner; this can introduce non-determinism.

Properties of voting methods, described in Table 6, indicate which methods are ap-

propriate for a given problem (Arrow et al., 2010). Ideally, a desired voting method

should be monotonic, Condorcet consistent, participatory, Pareto efficient, and inde-

pendent of irrelevant alternatives, without being dictatorial. This would ensure that

all votes are valued equally and fairly. Unfortunately, Arrow’s theorem is correct:

given at least three candidates and a voting method that is Pareto efficient and inde-

pendent of irrelevant alternatives, that method will also be dictatorial (Arrow et al.,

2010). Arrow’s theorem holds even when there are ties.

This section has reviewed metaheuristics, weight learning, ensemble methods, and

voting methods. Both metaheuristics and hybrid metaheuristics combine heuristics
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Property Definition
Monotonic A candidate’s outcome under a specific voting method is not

worse when a voter improves its rank for that candidate (Pérez-
Fernández et al., 2017)

Condorcet
consistent

A voting method always selects the Condorcet winner when such
a candidate exists

Participation The addition of a voter that prefers candidate A over candidate
B does not change the winner from A to B

Pareto efficient When every voter prefers candidate A over another candidate B,
the overall result also prefers A over B

Independent of
irrelevant
alternatives

A voter’s preference between two candidates is not influenced by
changes in preference for a third, irrelevant candidate

Dictatorial One voter alone decides the outcome of the vote

Table 6: Properties of voting methods and their definitions

and have been used to seek or improve solutions for path planning. Ensemble methods

combine multiple classifiers to produce a more robust overall classification. Weight

learning can improve machine learning accuracy. Voting methods decide which class

to predict in ensemble methods. An important gap in the literature, however, is

a method that incorporates both weight learning and voting to combine multiple

heuristics and metaheuristics. This proposal addresses that gap with situated-decision

strategies in Chapter 3. Another gap in the metaheuristic literature is a swarm

intelligence metaheuristic based on human behavior. The proposed work addresses

this with a novel, population-based metaheuristic for path planning. The next chapter

proposes situation-based robot navigation based on the related work in cognitive

science, HRI, metaheuristics, weight learning, and voting methods discussed in this

chapter.
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3. Proposed work: situations

This proposal addresses three major challenges in collaborative navigation: how to

learn and identify situations, how to learn and apply situated-decision strategies, and

how to generate meaningful natural language that explains these processes. This

chapter contextualizes this work with a description of an existing robot controller. It

then covers situations and situated-decision strategies, issues that arise from them,

along with preliminary work and proposed approaches.

3.1 Context: SemaFORR

The development environment for this proposal is SemaFORR, an autonomous robot

controller for navigation. The proposed work, however, is applicable to any robot con-

troller and can be implemented alongside other navigation architectures. SemaFORR

is an application of FORR, a cognitive architecture for learning and problem solv-

ing (Epstein, 1994).

FORR has been successfully applied in multiple domains, including game play-

ing (Epstein, 2001) and constraint satisfaction (Petrovic and Epstein, 2006). The

crux of any FORR-based system is that good decisions in complex domains are best

made by a mixture of good reasons. FORR represents each good reason with an Ad-

visor, a heuristic procedure that scores candidate actions. Similar to a metaheuristic,

FORR-based systems use a heuristic strategy to balance multiple heuristic rationales.

Despite sensor noise and actuator error, a SemaFORR-controlled robot learns to

navigate effectively in unfamiliar, dynamic, partially observable environments without

a map. Like the cognitive models discussed in Section 2.1, SemaFORR also draws

upon spatial cognition and human reasoning. To reach its target, SemaFORR uses

local sensor data, learned knowledge, and heuristic reasoning to select one action
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at a time and to contend with any obstacles. The resultant behavior is satisficing,

human-like, and rarely optimal. Although SemaFORR uses sensor data from a laser

rangefinder, it could be used with other rangefinders (e.g., sonar, lidar).

SemaFORR makes decisions based on a hierarchical reasoning framework and a

spatial model that it learns while it navigates. A decision state d records the robot’s

current sensor data and its pose when it makes a decision. As the robot travels, it

records its path to the target as a finite sequence of decision states, plus its final

decision state when it arrives within distance " of its target.

3.1.1 The spatial model

SemaFORR learns a compact, approximate spatial model from experience, one that

captures many of the features of a cognitive map. Instead of a metric map, Se-

maFORR’s model is a set of spatial affordances, abstract representations that pre-

serve salient details and facilitate movement. SemaFORR learns spatial affordances

from local sensor readings and stores them as spatial knowledge. This spatial model

is based on three primitive spatial affordances: regions (obstruction-free areas), trails

(usually-shorter paths derived from actually travelled paths), and conveyors (fre-

quently visited cells in a grid overlaid on the environment). Figure 1 gives examples

of each. SemaFORR’s spatial affordances are learned only after each successfully com-

pleted task. Like a person’s cognitive map, SemaFORR’s spatial model is a learned

abstraction of spatial knowledge. For example, trails capture route knowledge and

high-valued conveyors are landmarks.

A region is an obstruction-free area where the robot can move freely. A region

is represented as a circle whose center is the robot’s location in a decision state and

whose radius is the minimum distance sensed from that location to any obstacle. An
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(a) (b) (c)

Figure 1: Examples of affordances in a simple environment (a) a region with the
robot’s pose (black arrow) and laser rangefinders (b) a path (dashed line) and its
trail (solid line) (c) conveyors (darker shading denotes higher frequency)

exit is a point on a region’s circumference that intersects with a travelled path. Exits

are learned as places that allow access to and from a region.

A trail refines a path the robot has taken to reach a target. It consists of an

ordered list of trail markers, decision states selected from the robot’s path. The first

and last trail markers are the initial and final decision states on the path. The trail-

learning algorithm works backward from the end of the path, and creates a new trail

marker for the earliest decision state that could have sensed the current trail marker.

The resultant trail is usually shorter than the original path and provides a more direct

route to the target.

A conveyor describes how useful travel has been through a small area. In a grid

superimposed on the environment, each cell tallies the frequency with which trails

Figure 2: Example of a learned skeleton formed by a set of regions
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pass through it. High-count cells in the grid are conveyors. Figure 1(c) denotes

higher frequency with darker shading.

SemaFORR’s spatial model combines affordances to produce more powerful rep-

resentations, much the way a person’s cognitive map combines landmarks and route

knowledge to build survey knowledge. For example, the skeleton is a graph that cap-

tures global connectivity among regions. Each region is a node in the skeleton and an

edge joins two nodes if a path has ever moved between their corresponding regions.

Figure 2 shows an example of a learned skeleton.

3.1.2 Decision making

SemaFORR is a hybrid robot controller that uses commonsense qualitative reasoning

and its spatial model to make decisions. SemaFORR’s Advisors are organized into a

three-tier hierarchy, with rule-based decision making in tier 1, path planning in tier 2,

and commonsense, qualitative heuristics in tier 3. Table 7 lists SemaFORR’s current

Advisor rationales by tier. Figure 3 shows how SemaFORR integrates these elements

in its architectural design.

Given a decision state and a discrete set of possible actions, a tier-1 or tier-3

Advisor expresses its opinions on possible actions as comments. In a decision cy-

cle, SemaFORR uses those comments to select an action. Possible action sets are

alternately forward moves of various lengths and turns in place that produce various

rotations. A move with distance 0 is equivalent to a pause. Thus, in any given deci-

sion state, SemaFORR chooses only the intensity level of its next move or turn. The

resultant action sequence is expected to move the robot to its target.

Tier 1 invokes its Advisors in a predetermined order; each of them can either

mandate an action or veto some subset of actions. If no action is mandated and at

least two actions are unvetoed, the remaining actions are forwarded to the next tier.
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Tier 1, in order
Victory Go toward an unobstructed target
Enforcer Go toward an unobstructed waypoint
AvoidWalls Do not go within "aw of an obstacle
NotOpposite Do not return to the last orientation
Tier 2
A* Minimize distance traveled
CSA* Avoid crowds
Risk-A* Avoid risky actions
Flow-A* Avoid travel against a crowd’s flow
Tier 3

Based on commonsense reasoning
BigStep Take a long step
ElbowRoom Get far away from obstacles
Explorer Go to unfamiliar locations
GoAround Turn away from nearby obstacles
Greedy Get close to the target

Based on the spatial model
Convey Go to frequent, distant conveyors
Enter Go into the target’s region
Exit Leave a region without the target
Trailer Use a trail segment to approach the target
Unlikely Avoid dead-end regions

Table 7: SemaFORR’s Advisors and their rationales.

If a plan does not exist, then tier 2 constructs one and returns the decision cycle

to tier 1. SemaFORR currently uses only one planner at a time to produce a plan.

Otherwise, the remaining actions are forwarded to tier 3. Each tier-3 Advisor uses

its own commonsense rationale to construct its comments on the remaining possible

actions.

A comment from a tier-3 Advisor assigns a strength, a normalized value in [0,10],

to each available action. Strengths near 10 indicate actions that closely conform to

the Advisor’s rationale; strengths near 0 indicate direct opposition to it. Once all

tier-3 Advisors comment, SemaFORR selects the action with the most support using
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Figure 3: SemaFORR’s autonomous robot navigation architecture receives sensor
inputs from the environment and acts on that environment with the robot’s actuators

sum range voting

argmaxa2A

nX

i=1

cia

where cia is the comment strength of Advisor i on action a. Tier 3 introduces non-

determinism into action selection because it breaks ties at random.

The remainder of this chapter describes how my proposed work will build upon

SemaFORR to produce Situated-SemaFORR, a robust system for collaborative nav-

igation. First it discusses approaches to learn and identify meaningful and useful

situations that generalize over the robot’s experiences. Then it proposes a variety of

methods to learn and apply situated-decision strategies. These proposed contribu-

tions draw upon cognitive models of human navigation, incorporate principles from

human-aware and socially-aware robot navigation, and use weight learning and vot-
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ing methods to balance rationales. Situations and situated-decision strategies will

also facilitate human-friendly explanations of the robot’s decisions because of this

underlying human-like decision-making process.

3.2 Learn to identify situations

A robot that learns to represent and identify situations can specialize its behavior

to address immediate challenges and adapt to human collaborators. This section

discusses novel, general (i.e., platform independent) ways to represent situations and

methods to evaluate and access learned situations. Situated-SemaFORR will use

these representations to facilitate situated-decision strategies and human-robot com-

munication.

While a state s in robot navigation typically represents the robot’s pose and a

decision state d incorporates the robot’s sensor data, a situated state x also includes

additional features, such as a robot’s characteristics, its accessible external informa-

tion, its learned internal knowledge, its tasks and objectives, and its knowledge about

its environment. More formally, let X be a set of situated states that represent in-

stances of the environment. Then, a situation U ✓ X is a subset of similar situated

states that can be represented by a single exemplar e. Similarity is measured by a

problem-specific metric on a class of features that incorporates the robot’s situated

nature. Situations are not mutually exclusive, nor need a learned set of situations

be collectively exhaustive. Table 8 provides examples of features that could define a

situation.

There are many potentially meaningful situations. Some reflect the robot’s knowl-

edge about its environment: the robot may be lost (current state is unknown but

environment is known), in an unknown area (current state and environment are un-

known); otherwise it is in a familiar area. Some situations reference other objects in
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Features Potential variables

Individual
differences in spatial
abilities and
strategies

• Amount of experience in the environment on a discrete
scale
• Available actions in current state on a discrete scale
• Available strategies in current state
• Computational restrictions (time limit or memory limit)
on a discrete scale

External information
available to the
robot (e.g.,
instructions, maps,
directions)

• Reliability on a discrete scale
• Comprehensiveness on a discrete scale
• Ease of access on a discrete scale
• Understandability on a discrete scale
• Value of information on a discrete scale
• Agreement with overall environment, current state, or
spatial affordances on a discrete scale

Internal information
available to the
robot (e.g., spatial
affordances)

• Reliability on a discrete scale
• Comprehensiveness on a discrete scale
• Value of information on a discrete scale
• Probabilistic cognitive map (likelihood of affordance’s ac-
curacy and utility)

Overall objectives
• Minimize travel time, computation time, or travel dis-
tance
• Maximize comfort of people in the environment

Current task
• Avoid obstacles
• Get to the target

Overall environment
• Static or dynamic
• Presence of people and other robots on a discrete scale
• Fully observable or partially observable

Current state

• Sensor readings (e.g., tightly constrained on all sides and
shorter range readings to the robot’s left)
• Internal model (e.g., inside a region and near a trail)
• Number of times previously visited on a discrete scale
• Nature of immediate vicinity (spatial arrangement of ob-
jects with respect to the robot)

Table 8: Features for a situated state and examples of possible criteria to define a
situation

the environment: the robot detects a crowd of moving people or is accompanied by

a person. Other situations capture the robot’s progress on its task: the robot is late

(travel time has exceeded some threshold), trapped in some part of the environment
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(time in a spatial area of the environment has exceeded some threshold), or is moving

erratically (path smoothness criterion has been violated).

The problem now becomes how to recognize useful situations online. This requires:

• An efficient and compact data structure to capture all relevant information.

• A method to learn situations from these data structures and to produce an

exemplar for a situation.

• An evaluation mechanism to ensure that situations are both meaningful and

useful.

• An efficient method to access and detect learned situations.

Situated-SemaFORR addresses these challenges with a variety of approaches to rep-

resent, learn, evaluate, and access situations.

3.2.1 Situation representation

Four ways to represent situations will be explored; Figure 4 shows the relation-

ships between them. First, a situated state can be represented as a feature vector

hf1, f2, . . . , fmi. Individual features will describe the robot’s pose, sensor readings,

learned knowledge, current task, objective criteria, external or internal information,

possible actions, and metaknowledge. Features will change values with different fre-

quencies; some will remain unchanged for long periods of time. Methods for such a

data structure will address this issue. They will also quickly encounter the curse of

dimensionality.

Dimensionality reduction can reduce the size complexity of a feature vector and

identify significant features of situations. One approach is feature selection with

metaheuristics, which identifies those features that are most useful with respect to

the current problem (Guyon and Elisseeff, 2003). Another approach is feature ex-

traction with principal component analysis, which maps a set of features to a lower
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dimensional space with orthogonal linear combinations that capture correlations in

the data (Abdi and Williams, 2010). Either the full feature vector or its projec-

tion onto a lower dimensional space may be used by the proposed situation learning

algorithm to produce an exemplar e.

Second, a situation can be represented as a geometric pattern with, for example,

points, lines, or polygons. This representation provides an opportunity to exploit

geometric properties and spatial relations among the features in a robot’s situated

state, such as sensor readings, pose, target, and spatial knowledge. Like the way

people represent and describe spatial structures, a geometric representation of spatial

patterns allows learned situations to be flexible and robust to sensor noise. One

such representation could use the distribution and shape of a robot’s range sensors to

identify distinct spatial structures in the environment. For example, a doorway is a

geometric situation that could be represented as the set of situated states in which a

robot’s range sensors identify closer obstacles on its sides than in front of or behind

Figure 4: Hierarchy of situation representations that shows how situations can be
generalized by their similarity as conditions or over time as dynamic situations
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it. Another potential situation is a traditional corner; where two walls meet, the

range sensor’s endpoints should trace two lines that make an approximate right angle.

This geometric representation allows a situation to be flexible and parameterizable.

For example, the doorway situation allows for variety in the width and the depth

of the door frame. Similarly, the corner situation allows for some variation in the

angle between the obstacles. Ideally, a robot would learn to identify those geometric

patterns that are most useful for its task.

Both the vector-based and geometric-based representations for situations symbol-

ize sets of similar situated states. Situations can be further generalized into higher-

level representations, either by similarity or over time, as shown in Figure 4. A

dynamic situation represents dynamic events and patterns across time as a sequence

of exemplars in chronological order, D = he1, e2, . . . , eli. For example, an opening

door can be represented as a sequence of situations: door closed, door partially open,

and door completely open. A dynamic situation also occurs when an elevator door

opens or a person passes by the robot. Exemplars can also be grouped into conditions

based on their similarities, C = {e1, e2, . . . , eq}. For example, the situations where

the robot enters a room, exits a room, and travels through a narrow corridor could

be grouped together because they share similar characteristics (obstacles close to the

robot’s sides).

3.2.2 Learning situations

Given representations for situations, the next step is to design an online algorithm

that learns situations efficiently from limited experience. Algorithm 1 is pseudocode

for a basic, vector-based, situation-learning algorithm. Its input is a set of observed

situated states O = {x1, x2, . . . , xg}, where O ✓ X. The algorithm identifies the
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Algorithm 1: Vector-based situation learning algorithm
Input: situated states x1, x2, . . . , xg

Output: exemplars for situations e1, e2, . . . , eb
Observations x1, x2, . . . , xg

Exemplars {}
{U1, U2, . . . , Ub} group(Observations)
for situations Uh, h = 1 . . . b do

eh  exemplify(Uh)
Exemplars Exemplars [ {eh}

end
return Exemplars

situations, sets of similar states {U1, U2, . . . , Ub} ✓ O, and, for each situation Uh, it

outputs an exemplar eh.

Algorithm 1 groups observations into situations and then generates an exemplar

for each situation. These two components can be decoupled, with separate approaches

for each. A clustering algorithm will group observed states into vector-based situa-

tions based on similarity. Several popular approaches will be considered: hierarchical

clustering, k-means clustering, expectation maximization clustering, density-based

clustering, fuzzy clustering, and subspace clustering (Berkhin et al., 2006). Each

clustering algorithm groups data together in different ways that allow for flexibility.

For example, rather than a strict partition of the data, fuzzy clustering assigns a

likelihood membership for each cluster, which allows for more nuanced, overlapping

situations. Other approaches create a strict partition, which forces each situation to

be more distinctive. Density-based clustering approaches exclude outliers from clus-

ters, which could allow those outliers to symbolize potential new situations. Situated-

SemaFORR will use online adaptations of these clustering algorithms to continuously

cluster data as it is collected, so that the robot can learn as it travels (Aggarwal and

Reddy, 2013).
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The second part of Algorithm 1 identifies an exemplar eh for a situation Uh ✓ O.

One approach would take the centroid of a cluster as its exemplar (e.g., the mean

vector or the median vector computed on the values for each feature). Another

approach would select one of the observed states as the exemplar, possibly the one

closest to the centroid or the medoid (a vector that minimizes the Manhattan distance

to all the other vectors in the cluster). Another approach could be sparse coding,

which finds those representative data points in the set that can be linearly combined

to describe all the other points in the dataset (Elhamifar et al., 2012). Sparse coding

is different from a linear mapping with eigenvectors because it linearly combines data

points, whereas eigenvectors finds linear combinations of features in the data.

Learning geometric-based situations requires a more nuanced approach. Algo-

rithm 2 is pseudocode for a proposed geometric-situation learning algorithm. Its input

is a set of potential spatial relations {r1, r2, . . . , rz} among the features hf1, f2, . . . , fmi
in the observed situated states, where each spatial relation applies to a list of features.

Since there are exponentially many subsets of features and infinitely many possible

spatial relations, exhaustive computation is infeasible. Instead, the input to Algo-

rithm 2 is a predefined list of spatial relations of interest. Examples include the lines

formed by pairs of the hx, yi features (e.g., the robot’s position, the target, previous

robot positions), the angles between those points, and the polygons formed by three

or more of those points. Other spatial relations could consider the robot’s pose with

respect to its spatial model and the environment (e.g., lines formed by the robot’s

position and the nearest region’s center). Such a representation could potentially

learn situations based on the robot’s proximity to a region, and a situated-decision

strategy could use this information to adapt the robot’s behavior.

A geometric-based situation learning algorithm will first convert each of the ob-

served situated states into a set of geometric objects. Next, the algorithm will group
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Algorithm 2: Geometric-based situation learning algorithm
Input: spatial relations r1, r2, . . . , rz and situated states x1, x2, . . . , xg

Output: exemplars for situations e1, e2, . . . , eb
Relations r1, r2, . . . , rz
Observations x1, x2, . . . , xg

Exemplars {}
GeometricObjects convert(Relations,Observations)
{U1, U2, . . . , Ub} group(GeometricObjects)
for situations Uh, h = 1 . . . b do

eh  exemplify(Uh)
Exemplars Exemplars [ {eh}

end
return Exemplars

these geometric objects into situations based on their similarity with a clustering

algorithm (e.g., the same potential approaches proposed for the vector situations).

Finally, the algorithm will produce an exemplar to represent each situation with

methods proposed earlier.

For example, consider a situated state that includes the robot’s closest and far-

thest sensor endpoints, hxclose, yclosei and hxfar, yfari respectively. As in Figure 5, a

geometric relation r of interest is the line determined by hxclose, yclosei and hxfar, yfari.
Algorithm 2 would calculate the slope and intercept of that line in each situated state

x, and then cluster those pairs to group situated states with similar slopes and inter-

cepts together. Finally, it would produce an exemplar for each cluster.

Another approach to learn and represent situations is deep learning. Recent suc-

cess in image recognition, for example, has relied on deep learning to identify features

and reduce the dimensionality of the data. More recently, unsupervised and semi-

supervised deep learning architectures have learned appropriate similarity metrics and

clustered high-dimensional data (Law et al., 2017; Chen, 2015). A capsule network is

a recent deep learning approach that encodes spatial relations among different parts
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(a) (b)

Figure 5: (a) Examples of potential geometric situations UA (dashed lines) and UB

(dotted lines) determined by hxclose, yclosei and hxfar, yfari. Algorithm 2 groups the
lines based on their slope and intercept. The robot’s pose at a decision point appears
as a black point and arrow. Other than the gray walls invisible to the robot, solid
colored lines indicate the closest and farthest obstacles detected by the robot’s laser
rangefinder from each of the robot’s poses. (b) The exemplars eA and eB for UA and
UB that could be produced by Algorithm 2

of an image in a convolutional neural network (Sabour et al., 2017). To learn geo-

metric situations, a capsule networks could identify spatial relations among features

in a situated state and then create situations with those learned relations.

Given enough learned situations, clusters of their exemplars will be conditions,

which group the most similar situations into broader categories. To create meaning-

ful conditions, the learned situations would ideally be varied and numerous. There

is no way to know a priori, however, whether situation learning will produce enough

situations to identify meaningful conditions. The selection of a clustering algorithm

and the settings for its parameters will be varied to attempt to produce a satisfac-

tory set of situations from which to learn conditions. The resultant hierarchy of

abstractions based on the conditions and the situations could facilitate hierarchical
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decision-making with the situated-decision strategies, as well as a more natural de-

scription of the robot’s learned knowledge for a human collaborator.

Dynamic situations are more difficult to learn because they involve patterns over

time. Algorithm 3 is pseudocode to learn dynamic situations. The algorithm accepts

a chronological sequence of observed situated states, identifies which situation each

belongs to, and builds a corresponding sequential list of their respective exemplars in

the same order. If a situated state belongs to more than one situation, then multi-

ple potential sequences must be considered. For example, if a sequence of observed

situated states x1, x2, x3, x4, x5 were associated with situations U1, U3, U1, U3, U2, re-

spectively, Algorithm 3 would produce the sequential list of exemplars e1, e3, e1, e3, e2.

Next, the algorithm characterizes the exemplar sequence by its most frequent sub-

sequence of length greater than one. In the example, this would be e1 e3, a learned

dynamic situation. Likely approaches to find the most common sequences in a list

of objects are drawn from natural language processing, such as n-gram models (for

exact sequences of length n) and q-gram models (for approximate sequences of length

q) (Fink, 2008). Another approach could be text compression methods that find se-

quences of frequent symbols to achieve maximum compression of text data (Wan,

2003).

3.2.3 Situation evaluation and access

Learned situations will be evaluated by two metrics that examine how well an algo-

rithm identifies distinct clusters (Brun et al., 2007). One metric is the sum of the

squared distances between each data point and its cluster’s centroid. Ideally, this

metric should be close to 0, which would indicate high intra-cluster similarity. The

other evaluation metric is the Silhouette Coefficient, which compares the mean dis-

tance between a data point and all other points in the same cluster with the mean
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Algorithm 3: Dynamic situation learning algorithm
Input: situated states x1, x2, . . . , xg, situations U1, U2, . . . , Ub, exemplars
e1, e2, . . . , eb, and ⌘ the minimum length of dynamic situation sequences

Output: DynamicSituations
Observations x1, x2, . . . , xg

Situations U1, U2, . . . , Ub

Exemplars e1, e2, . . . , eb
Sequence ( )
for x◆, ◆ = 1 . . . g do

identify x◆’s situation in Situations
append that situation’s exemplar to Sequence

end
DynamicSituations most common patterns with length � ⌘ in Sequence
return DynamicSituations

distance between that same data point and the nearest-neighbor cluster (Rousseeuw,

1987). This approach addresses not only intra-cluster similarity, but also inter-cluster

dissimilarity.

Other cluster-evaluation methods use a gold standard or hand-labeled clusters to

evaluate a learned clustering. To that end, several human coders could cluster the

observed situated states from a robot’s navigation experience to generate a standard.

Methods to compare a clustering to a gold standard include precision and recall, mu-

tual information, the Rand index, the Fowlkes-Mallows index (Wagner and Wagner,

2007), and the V-measure (Rosenberg and Hirschberg, 2007).

Situated-SemaFORR must contend with two challenges: where to store its learned

knowledge, and how to retrieve data from that knowledge store. Data may be too

extensive for storage on-board the robot, but retrieval from off-board storage would

be limited by the wireless bandwidth. If a robot limited how often it learned situa-

tions, that could detract from navigation decisions and prevent human-like, real-time

learning. Although no easy solution exists for the data storage problem, one approach

could be to retain only some navigation history on board (e.g., only those data points
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close to exemplars). Although this could result in the loss of potentially important

data, it is more human-like; people tend to remember only the most salient details

of their experiences. Wherever the knowledge is stored, Situated-SemaFORR will

efficiently retrieve it with standard database retrieval methods.

Another issue related to retrieval is how to determine if the robot’s current state

is part of an existing situation or if it is potentially novel. The robot must quickly

determine its situation so that it can select the appropriate situated-decision strat-

egy. One approach is to measure the distance between the current state and the

exemplars for each of the situations. If the distance is below some threshold then it

will be considered part of that exemplar’s situation, otherwise it would be novel. (A

threshold less than half the distance between the two closest exemplars, among them

all, guarantees that the current state would never be below the threshold for more

than one situation.) Another approach would be to assume that the current state is

part of the closest exemplar’s situation, and then periodically recluster (e.g., at the

end of a task).

3.2.4 Preliminary work

Situated-SemaFORR adapts SemaFORR’s architecture to incorporate situation learn-

ing, which will be done in parallel with learning the spatial model. Figure 6 shows

Situated-SemaFORR’s architecture, a revision of Figure 3 that incorporates situation

learning. After situations are learned, tier 1 now also receives the current situation

based on the robot’s current state. Section 3.3 will describe how these learned sit-

uations will be used within the context of this revised architecture to improve both

navigation behavior and the ability to collaborate effectively with people.

SemaFORR is a package implemented in ROS, the state-of-the-art Robot Operat-

ing System. This allows SemaFORR to control either a physical robot or a simulated
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Figure 6: Situated-SemaFORR’s architecture with situation learning. Proposed work
introduced in this section is indicated in uppercase.

one. My preliminary work included the implementation of trails and several Advi-

sors, data logging in a machine readable format, and bug fixes in the ROS version of

SemaFORR. The modular nature of ROS also supports easy integration of new com-

ponents into existing systems, such as those for Situated-SemaFORR. MengeROS is a

new tool that simulates both robot navigators and crowds of pedestrians (Aroor et al.,

2017). MengeROS is integrated with ROS and it should facilitate rapid evaluation of

different dynamic navigation scenarios. Although MengeROS can simulate multiple

robots, this proposal specifically focuses on the problem of collaborative navigation

for a single robot.

In preparation for situation learning, I have implemented a general framework

to capture a situated state’s features. It processes the output from the robot’s log
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data and produces a data object that stores values for all of the specified features.

The framework is modular; it is easy to add and remove features and to build more

sophisticated features that combine existing features. Its output is the vector-based

situated states that will be used for situation learning.

This section has formalized situated states, proposed approaches to represent sit-

uations, and described methods to identify, evaluate, and access learned situations.

These methods draw upon techniques from machine learning (e.g., clustering and

deep learning), natural language processing, and cognitive science. The next section

considers how to learn and use situated-decision strategies for each learned situation.

These strategies will enable Situated-SemaFORR to navigate effectively and collabo-

ratively with people and to explain its decision-making rationales more naturally.

3.3 Learn situated-decision strategies

Currently, SemaFORR and most autonomous robot navigation systems assume that

one general strategy is appropriate for all situations. Situated-SemaFORR’s hypoth-

esis is that specialization of a robot’s behavior for each situation is more human-

like, more efficient, and will result in improved human-robot collaborative navigation.

Here, situated-decision strategies will combine heuristics, metaheuristics, path plan-

ning, and weight learning to find satisfactory solutions to situations. This section

describes multiple approaches to learn and use situated-decision strategies. It also

discusses how these strategies will be evaluated and how they will evolve over time.

Formally, a situated-decision strategy � selects either an action a for a given situ-

ation U , or a plan P for a given dynamic situation D, to advance the robot toward

its target. For example, in the corner situation described earlier, a situated-decision

strategy could choose to rotate the robot 180� so that it no longer faced into the

corner. This approach draws upon case-based reasoning, a model of human reason-
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ing that solves new problems by finding and adapting solutions to similar problems

previously encountered (Kolodner, 2014). Most case-based reasoning systems rely on

a diverse and reliable database of experiences with solutions that must be specified

prior to use. In contrast, Situated-SemaFORR will allow the robot to learn both

situations and strategies for responses to those situations.

The remainder of this section discusses the components of situated-decision strate-

gies. A variety of new Advisors allow the robot to integrate robust, diverse strategies

into its decision-making mechanism. Situated-SemaFORR will also add methods to

learn situated-decision strategies with weight learning and voting.

3.3.1 New spatial representations

One way to potentially improve SemaFORR’s decision making capability is to add

more sophisticated representations to its spatial model. This subsection describes

two new spatial affordances: doors and hallways. It also describes barriers, a spatial

representation of obstacles in the environment.

A door generalizes over the exits of a region. It is represented as an arc along

the region’s circumference. The door-learning algorithm introduces a door when the

length of the arc between two exits is within some small "door. Once generated, a

door incorporates additional exits if they are within "door of it. A door represents a

way into or out of a region. Doors and the door-learning algorithm were developed by

Gil Dekel (a Hunter undergraduate student). My preliminary work for this proposal

included their incorporation into SemaFORR.

Another potential spatial affordance is a hallway, which captures well-travelled

routes in some cardinal direction (vertical, horizontal, major diagonal, or minor diag-

onal), and typically connects different parts of the environment. A hallway generalizes

over line segments observed by the robot, such as neighboring trail markers on a trail,
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neighboring situated states in its path, or range sensor end-points from the robot’s

position. Like other spatial affordances, hallways are learned after each task is suc-

cessfully completed.

Algorithm 4 is pseudocode to learn hallways. Its input is a set of line segments,

such as the learned trails or the robot’s path. First, the line segments are grouped

by the four cardinal directions. (More directions would capture more nuances in the

environment’s connectivity, but would also likely learn fewer hallways because the

data would be partitioned into more groups.) Next, within each group of line seg-

ments, nearby line segments are merged together based on the distance between their

respective endpoints and the similarity in their angle with respect to the horizontal

axis. This step consolidates information and adjusts for sensor error. Finally, the

merged segments are pruned based on their distance � from other merged segments

and the number ! of nearby segments. The parameters � and ! are tunable thresholds

that control how many hallways are produced. For example, a conservative approach

would require many segments to be close together to justify the existence of a hall-

way. Finally, to create hallways, one approach is to obtain the convex hull for each

group of nearby segments. Another approach represents a hallway as a rectangle.

This approach would maximize coverage of nearby segments inside a rectangle and

also minimize the amount of empty space in the rectangle.

Algorithm 4: Hallway learning algorithm
Input: trails or paths, � and !
Output: Hallways
LineSegments input line segments
CardinalDirections Partition(LineSegments)
MergedSegments Merge(CardinalDirections)
Hallways Prune(MergedSegments, �,!)
return Hallways
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Algorithm 5: Barrier learning algorithm
Input: decision state history
Output: Barriers
SensorHistory  decision state history
Barriers { }
for each situated state 2 SensorHistory do

Construct line segments from each pair of adjacent sensor endpoints
Repeatedly merge adjacent line segments with similar slopes
if a line segment is near an existing barrier and has a similar slope then

Merge the line segment with the barrier
Barriers remaining line segments

end
return Barriers

Another new spatial representation will be a barrier ; it generalizes over range read-

ings to symbolize long stretches of obstacles as lines. Without a map, SemaFORR

relies purely on its sensors to detect obstacles in the environment. This spatial rep-

resentation abstracts the sensed endpoints from a rangefinder to produce lines. For

example, our real-world robot (Fetch Robotics’ Freight) detects obstacles within 25

meters from the robot along a 220� arc. Learned barriers approximate the locations

of obstacles in the environment. Barriers are not meant to capture all spatial details

of the obstacles in the environment or to build a map, but rather to abstract observed

sensor readings into useful representations that facilitate the robot’s movement.

Algorithm 5 is pseudocode to learn barriers. First, it finds the slope of the line

segment formed by each pair of adjacent sensor endpoints. Although SemaFORR

accepts any number of range sensor readings in a parameterized arc, it currently

simulates Freight’s 660 range sensors, which would yield 659 line segments with their

slopes. Adjacent line segments are merged when the difference in their slopes is

below some "slope. The merged line segment is found by least-squares regression on

the points that make up the merging segments. This merger process is repeated
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until no adjacent line segments meet the merger criterion. Next, each remaining line

segment is compared to the previously learned barriers and is merged if the slope is

similar and the distance between the line segments is below some "barrier. The final

list of barriers is saved and the process is repeated with a new decision state.

In the worst case, Algorithm 5 is quadratic in the number of sensor endpoints

because for ⌫ endpoints, there will be a maximum of (⌫�2)(⌫�1)/2 comparisons be-

tween adjacent line segments. Additionally, each line segment is compared against the

⇠ previously learned barriers, which in the worst case is ⇠ = (⌫�1)⇤ |SensorHistory|.
So the overall worst-case complexity of the algorithm is O(|SensorHistory| ⇤ ⌫2). To

reduce this complexity, the algorithm could skip some sensor endpoints or do batch

learning.

3.3.2 New tier-3 Advisors

This subsection describes potential tier-3 Advisors based on a variety of rationales.

These Advisors draw from commonsense reasoning, new spatial affordances, models

of pedestrian movement, proxemics, cognitive science, and a human-subject study.

Table 9 summarizes them, along with their basis and rationale.

Several new tier-3 Advisors will use the proposed spatial affordances to comment

on actions. As part of my preliminary work, I created three door-based Advisors:

Access, EnterDoor, and ExitDoor. Access supports actions toward regions

with many doors because they potentially represent places in the environment with

high connectivity. EnterDoor supports actions that go into a region through a

door; ExitDoor supports actions that leave a region through a door.

New tier-3 Advisors will utilize the learned hallways. For example, Follow will

support actions that take the robot farthest down the hallway nearest to the target,

in the direction that brings it closest to the target. Hallways can also be connected in
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Advisor Rationale
Based on commonsense reasoning

Curiosity Go to never visited locations
LearnSpatialModel Go to locations without learned spatial affordances

Based on the spatial model
Access Go to a region with many doors
EnterDoor Go into the target’s region through a door
ExitDoor Leave a region without the target through a door
Follow Use a hallway to approach the target
Crossroads Go to a highly connected hallway
Stay Stay within a hallway
KeepBack Stay far away from barriers
Parallel Move along a barrier
GetAround Go around a barrier toward the target

Based on the crowd models
CrowdAvoid Go to low-density grid cells
FindTheCrowd Go to locations with uncertain crowd density
RiskAvoid Go to low-risk grid cells
FindTheRisk Go to locations with uncertain risk
FlowAvoid Go along with the crowd flow
FindTheFlow Go to locations with uncertain crowd flow

Based on proxemics
Interpersonal Do not violate personal or intimate space
Formation Do not violate F-formations
Front Do not directly confront a person
Rear Maintain distance behind a person
Side Do not cross perpendicularly in front a person
Visible Stay in sight of nearby people
Wait Wait for person to pass

Based on cognitive science
Enfilade Move toward a recent position
Thigmotaxis Stay near a large object or barrier
VisualScan Turn in place to examine the environment
LeastAngle Leave a region or a hallway in the target’s direction

Based on a human-subject study
HumanPredictor Support actions predicted by human trajectories
HumanReward Support actions based on a learned reward function
HumanDescription Support actions based on input strategies

Table 9: Proposed tier-3 Advisors and their rationales
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a skeleton-like graph. Crossroads will support actions that take the robot closer to

hallways with more connectivity in that graph. Stay will support actions that keep

the robot within a hallway, because the hallway is a well-traversed area.

Other new tier-3 Advisors will reference barriers to comment on potential actions.

KeepBack will support actions that avoid learned barriers. Parallel will support

actions that move along learned barriers. GetAround will support actions that cir-

cumnavigate a barrier if the target is on the other side. (GetAround is similar to an

Advisor implemented in Ariadne, a FORR-based system for navigation in simplistic

grid environments, that circumnavigated obstructions (Epstein, 1998).)

In addition to these new spatial model-based Advisors, two new Advisors will be

created to encourage Situated-SemaFORR to explore and actively learn about its

environment. The rationale of LearnSpatialModel is that a spatial model that

covers more of the environment will better facilitate travel. It will support actions

toward parts of the environment without known regions and with low conveyor counts.

Curiosity will support actions that take the robot toward hitherto unvisited parts of

the environment. Curiosity considers the robot’s previously visited locations from

its entire history, whereas Explorer only considers those locations visited during

the robot’s current task. These two exploration-based Advisors will contend with

Advisors that greedily exploit the robot’s knowledge, including Greedy and those

Advisors based on the spatial model.

Recent work on SemaFORR incorporated a path planning algorithm, CSA*, that

learns to avoid crowded areas of the environment (Aroor and Epstein, 2017). The

crowd model is represented as a grid overlaid on the environment, where each cell

records the crowd density observed by the robot. Once learned, this crowd model

can also be exploited by new tier-3 Advisors to vote on actions that support crowd

avoidance. Just as Convey attracts the robot toward high-valued conveyor-grid cells,
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CrowdAvoid will attract it toward low-density crowd-grid cells. FindTheCrowd’s

rationale is to reduce uncertainty in the crowd model’s density estimate, so it supports

actions that go toward grid cells where the robot has recorded crowd observations less

often or where the observations have high variance.

I also contributed to recent work that learns a risk model, whose grid cells record

how often the robot came close to a pedestrian (Aroor et al., 2018). Other recent work

developed a flow model, which records, for each grid cell, how often obstacles move

in eight directions. Similar Advisors will be based on these two models: RiskAvoid,

FlowAvoid, FindTheRisk, and FindTheFlow. For example, FlowAvoid will

support actions that move along with the crowd and avoid those opposite to the

crowd’s direction. Although these new Advisors support crowd avoidance, they could

be easily modified to seek the crowd if the robot’s task calls for it (e.g., a museum

robot guide that seeks out people).

Additional new tier-3 Advisors will draw upon proxemics to incorporate human

social norms into Situated-SemaFORR’s decision-making rationales. Because this

proposal addresses collaborative navigation, robot-robot interaction and social norms

between robots are not considered. Interpersonal is inspired by Hall’s four in-

terpersonal distances (intimate, personal, social, and public) to penalize actions that

come too close to a detected person (Hall, 1963). It will support actions that remain

in the social and public space and oppose actions that enter or stay in a person’s

intimate or personal space. It has been suggested that a logarithmic penalty function

is more appropriate than a linear function (Henkel et al., 2014).

Another model from proxemics is the F-formation, which describes how two or

more people arrange themselves spatially during an interaction (Kendon, 1990). These

formations include lines, circles, and other patterns that depend upon the specific

joint activity of a group of people. A person faces someone or something when
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her orientation ✓ from her pose positions her face toward it. Formation will oppose

actions that would move the robot through a detected F-formation (e.g., cross between

two people who face each other). This requires a pose detection algorithm to identify

the poses of people nearby based on the robot’s percepts. The arrangement of those

poses would be matched against a database of known F-formations. (Although most

human pose estimates rely on cameras or 3D laser range scans, we could adopt an

existing 2D laser rangefinder approach with a Kalman filter (Svenstrup et al., 2009).)

Several other Advisors incorporate social norms from HRI and proxemics based on

peoples’ detected poses. When a person faces the robot, Front will oppose actions

that directly approach her. When the robot is behind someone who faces away from

it, Rear will support actions that maintain some distance from that person. Side

will oppose actions that cross perpendicularly in front of a person. The robot is

visible to a person when it is in that person’s field of view relative to her orientation.

Visible will support actions that offer visibility to the most nearby people. Wait

will support actions that allow nearby people to pass by the robot first.

Other potential Advisors incorporate human strategies documented in the cogni-

tive science literature. One study found that subjects followed three heuristic search

strategies: enfilading, thigmotaxis, and visual scan (Kallai et al., 2005). Enfilad-

ing is movement that oscillates in a small area of the environment. Thigmotaxis is

movement that stays near a large object or on the periphery of an open area during

navigation as a safety mechanism in an unfamiliar environment. Visual scan is move-

ment that remains in a fixed position and turns in place to examine the environment.

New Advisors with these strategies as rationales will encourage the robot to examine

unknown environments. Enfilade will support actions toward the robot’s recent

positions. Thigmotaxis will support actions that keep the robot close to a nearby

barrier or obstacle. VisualScan will support actions that encourage the robot to
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rotate in place toward orientations the robot has not faced when in that part of the

environment but minimize overlap with the robot’s current field-of-view. For exam-

ple, since our robot’s laser rangefinder detects along a 220� arc, VisualScan will

support rotation to an orientation where the new arc least overlaps with the current

arc.

The least-angle strategy is a decision-making heuristic in which a person selects

the direction most in line with the target’s direction at an intersection in an unknown

environment (Hochmair and Frank, 2000; Dalton, 2003). LeastAngle will use the

skeleton to support actions that leave a region or a hallway to a connected region or

hallway in the direction most in line with the target. LeastAngle considers the pos-

sible directions for movement at an intersection in the skeleton that captures broader

connectivity in the environment. This is more sensitive than Greedy, which always

picks the movement most in line with the target but without regard for obstacles.

An alternative approach to generate new Advisors would be to conduct a human

subject study to examine what strategies people use during navigation and then

encode those strategies as Advisors. This approach will be used if the Advisors

proposed thus far are unsuccessful. One could either infer human strategies from

behavior during navigation or ask subjects to describe them. In the first case, subjects

would navigate to several targets in a simulated environment and their navigation

behavior would be analyzed for common strategies. A model could be trained on

the subjects’ trajectories to predict the most likely action given a situated state.

The Advisor HumanPredictor would support actions based on their predicted

likelihood. Alternatively, human behavior could be modeled as a Markov decision

process, and inverse reinforcement learning could learn a reward function for it. The

Advisor HumanReward would support actions that maximize this reward function.
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After a set of navigation tasks, subjects could be asked to describe their strategies

in natural language to answer questions such as “Why did you do that?”, “Why did

you go that way?”, “What were you thinking when you did this?”, and “Why didn’t

you do something else?” To ensure inter-coder reliability, multiple coders would

examine responses to these questions. The resulting categories could identify common

strategies and when they were used. Finally, any non-redundant strategies would be

encoded as new Advisors.

There are two potential issues that must be addressed here: scalability and param-

eter tuning. Currently, SemaFORR has 10 Advisors in its tier 3, and the proposed

work could incorporate as many as 30 more. Although this would quadruple the

number of Advisors, the architecture is expected to scale and still make decisions

in real-time. For example, a previous FORR-based system that solved constraint

satisfaction problems had 42 tier-3 Advisors and scaled effectively as Advisors were

added (Petrovic et al., 2007). The second issue is the number of potential parameters

that will need to be tuned for all the proposed tier-3 Advisors. This will be addressed

empirically to ensure good performance, but also will draw from past literature where

appropriate (e.g., proxemics research for the proxemics-based Advisors).

This subsection has described new approaches for tier-3 Advisors based on a vari-

ety of rationales. Because it incorporates commonsense, an enhanced spatial model,

proxemics, cognitive science, and crowd avoidance strategies, this proposal diversifies

SemaFORR’s reasons for taking an action to accomodate collaborative navigation.

This diverse, rich set of Advisors allows a robot to further specialize its behavior and

adapt to nearby people during a collaborative navigation task. The next subsection

reviews new proposed tier-2 Advisors for path planning.
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3.3.3 New A* planners

This subsection describes how Situated-SemaFORR will modify SemaFORR’s tier 2.

It first describes a new method to select a plan that satisfices multiple path-planning

criteria. Then, it outlines several new planners based on rationales from human

navigation.

A* is a traditional search algorithm to find a plan that performs well with respect

to some objective O, such as “minimize distance traveled” or “avoid crowds” (Korf,

2014). A* relies on a graph whose nodes represent possible locations in a static

environment. An edge between two nodes in the graph indicates that the robot can

move from one location to the other. Each edge has a weight that represents the

anticipated cost of that action from O’s perspective. As A* seeks a plan through that

graph, it estimates f(s), the estimated total cost of a partial plan up to node s, as

g(s), the total of the edge costs from the start node to s, plus h(s), a heuristic that

estimates the cost from s to the target’s node t. A* is optimal when its heuristic is

admissible, that is, it never overestimates the actual cost to the target node.

SemaFORR’s tier 2 is a set of A* path planners, each of which uses a different

objective to weight the A* graph. For example, CSA* incorporates both crowd-

density data and distance into crowd-sensitive weights on the edges of its graph and

then applies A*. Thus the objective of a CSA* plan is to both avoid crowds and

minimize travel distance. SemaFORR currently uses only one planner in Table 7 at

a time. Although they have different objectives, they all use the Euclidean distance

between s and t for h(s).

In contrast, Situated-SemaFORR will have a set of planners that use their ob-

jectives to score one another’s plans. Each planner’s objective function will assign a

score, a normalized value in [0,10], to plans from the other planners. A score near 10
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Minimize path length Minimize effort
Minimize travel time Longest leg first
Minimize the number of turns Shortest leg first
Maximize the number of turns First noticed path
Minimize the number of curved segments Novel path (different from previously travelled)
Maximize the number of curved segments Avoid congestion
Minimize the number of segments in the chosen path Avoid detours
Minimize the number of non-orthogonal intersections Minimize negative externalities (e.g., pollution)
Minimize actual or perceived cost Maximize aesthetics

Table 10: Human path-selection heuristics (Golledge, 1999, p. 31)

indicates that a plan closely conforms to a planner’s objective; scores near 0 indicate

opposition to it. Once all tier-2 plans have been scored, Situated-SemaFORR will

select the plan with the most support among all planners using sum range voting

argmaxP2 

⇧X

⇡=1

⇥⇡(P )

where ⇥⇡(P ) is the score objective ⇡ assigns to plan P . Ties will be broken at random.

A cognitively-based robot navigator should incorporate and balance a variety of

path-selection heuristics. People use many different objectives to choose paths, and

the objective they select has been shown to depend upon their motivation (Golledge,

1999). Table 10, adapted from Golledge, lists some of these objectives. My proposed

voting-based approach selects a plan that maximally supports multiple objectives.

A new tier-2 planner could use A* to plan based on some of these human objec-

tives. Table 11 summarizes the proposed tier-2 planners along with their objectives.

(Some of the human path-selection objectives in Table 10 are not appropriate for

collaborative navigation; they have been excluded here.) For example, Novel is a

path planner whose objective is to take novel paths and avoid travel near previously

visited locations. Time estimates travel time based on the robot’s speed, distance to

be traveled, and constraints from potential obstacles, such as the crowd.
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Advisor Objective
Time Minimize travel time
Turn Minimize number of turns
Smooth Minimize the angle between adjacent path segments
Novel Avoid travel near previously travelled paths
Spatial Minimize travel outside learned regions or hallways
Trail Follow along learned trails toward the target
Barrier Maximize travel along barriers
Conveyor Maximize travel through high-valued conveyors

Table 11: Proposed tier-2 planners and their objectives

Inspired by cognitive science, an alternative approach would be to search in a

modified A* graph. The fine-to-coarse planning heuristic was observed in a study

with human subjects in a virtual environment (Wiener et al., 2004). The subjects

made a detailed plan for their immediate vicinity, but an abstract one for distant

locations. To apply this heuristic, Situated-SemaFORR could remove nodes in the

A* graph so that, instead of nodes spaced evenly throughout Euclidean space, a node’s

proximity to nearby nodes would depend upon its distance from the robot. Nodes

near the robot would be near each other and nodes farther from the robot would also

be farther from each other. Figure 7 shows an example of how this heuristic could

be applied in a graph. Plans from such a graph are more fine-grained near the robot

and more “abstract” farther from it.

Other search algorithms could also be used as planners. Examples include D*

search (Stentz, 1994), D* Lite (Koenig and Likhachev, 2002), LPA* (Koenig et al.,

2004), and MPGAA* (Hernández et al., 2015). The drawback to all of these, and

to A* as well, is that they require a heuristic to estimate the cost from a node to

the target. When the robot’s objective is to minimize path length then Euclidean

distance is an obvious admissible heuristic. When the robot has a different objective,

however, selection of an admissible heuristic is more difficult. SemaFORR’s current
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Figure 7: An example of the fine-to-coarse heuristic in a graph, where the robot’s
current node is the green square, and there are three levels of granularity in the graph
based on distance from the robot

planners’ heuristics are admissible because they treat the non-distance-based cost to

the target node as 0, which is always an underestimate of the true cost to the goal.

For example, CSA* combines distance and crowdedness in its edge costs for g(s),

but its heuristic h(s) only considers Euclidean distance and sets the heuristic cost

estimate from the crowd to 0. When the heuristic is always 0, however, A* search

is equivalent to breadth-first search, which is costly. The next subsection describes

a new proposed search algorithm, inspired by human search-and-rescue techniques,

that could be used instead.

3.3.4 Search-and-rescue planning algorithm

Chapter 2 argued that a human-aware robot navigator should be natural and sociable,

and that such behavior is facilitated by the use of human rationales for navigation.
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Although this proposal incorporates human rationales to select an action and human

objectives for path planning in a cognitive architecture, SemaFORR has thus far only

planned with versions of A*, which is not based on human behavior. The Search-

and-rescue planning algorithm (SARPA) is a cognitively-based alternative.

SARPA is a new proposed population-based metaheuristic that explores a search

space similarly to the way people search an environment. It both incorporates

models of pedestrian movement and exploits learned knowledge the way people do

during search-and-rescue missions. Swarm-based metaheuristics (e.g., artificial bee

colony (Karaboga and Basturk, 2007), particle swarm optimization (Kennedy and

Eberhart, 1995)) draw from animal behavior, evolution, and other natural processes.

SARPA, while similar to them is, to the best of this author’s knowledge, the first

search algorithm that also draws on human search behavior in two-dimensional space.

Without many simplifying assumptions, it is difficult to prove that a metaheuristic

is guaranteed to converge to a global optimum or even a local optimum in a satis-

factory amount of time. Instead, metaheuristics’ convergence is usually evaluated

empirically. Thus, SARPA could be empirically evaluated on standard search tasks.

Its performance could be compared with other state-of-the-art metaheuristic and hy-

brid metaheuristic approaches (Boussaïd et al., 2013; Blum et al., 2011). Although it

will not be provably optimal (as A* is), SARPA avoids the need to find an admissible

heuristic for objectives other than shortest path.

SARPA uses searchers, artificial agents, to explore the same objective-oriented

graph used by A*, but it is inspired by real-world search-and-rescue missions. Human

behavior on these missions represents a manifestation of people’s underlying cognitive

processes of problem solving and decision making. Typically in search and rescue,

people are divided into multiple teams, each of which uses a different strategy to search

for a missing person (Wilfong, 2004). People use helicopters to identify potential areas
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for on-the-ground teams to explore. A hasty team is a rapidly-deployed team that

goes as quickly as possible to the locations in the search area where the missing person

is most likely to be. Search-and-rescue units also use dogs to track and follow the

scent of the missing person, and may eventually resort to a grid-search team that

moves methodically along a predefined search pattern to comb an area exhaustively.

Despite the considerable time and effort it entails, a grid team often finds valuable

clues about the missing person. Although SARPA is not an exact replica of real-world

search-and-rescue missions (particularly because the target’s location is known to the

searchers), these inspirations form SARPA’s cognitive basis.

SARPA partitions its searchers into four teams inspired by real-world scenarios:

helicopter, hasty, dog, and grid. These teams explore a search space to find a satisfac-

tory complete plan, a plan in the graph from a start node to a target node. A partial

plan represents a plan in the graph that does not arrive at the target. The quality

of a complete plan is measured by the planner’s objective O as the total cost of the

edges in the plan. SARPA seeks a satisfactory complete plan both with local search

in the vicinity of a node, and with global search through the entire search space. The

dog and hasty teams do hill-climbing local search, the grid team does exhaustive local

search, and the helicopter team does global search.

SARPA will proceed in stages. First the helicopter team will explore randomly,

and then the hasty team will greedily search areas found by the helicopter team.

Next, the grid team will search exhaustively based on predefined search patterns, and

finally the dog team will search greedily within areas found by the grid team. Each

team retains the best complete plan that it finds, and this sequence is repeated until

a satisfactory plan emerges or a time limit is exhausted.

The input to SARPA is an objective-oriented graph of the environment, the robot’s

location, the target’s location, and values for its parameters. Table 12 lists the full
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General Search patterns
• Number of individuals in each team • Track space
• Overall search time limit • Search area boundary
• Helicopter search time limit • Sector radius
• Hasty search time limit • Sector angular displacement
• Grid search time limit
• Dog-team search time limit
Collective behaviors Movement behaviors
• Positive feedback bias to visit node • Count maximum
• Random fluctuation likelihood • Count decay rate
• Negative feedback iteration threshold • Count bias to visit node
• Negative feedback similarity threshold • Count node avoidance bias
• Negative feedback threshold for num-
ber of similar partial plans

• Social force velocity

Table 12: Parameters for SARPA

suite of SARPA’s parameters, most of which specify how searchers move through

the graph. These will be set empirically to ensure quick convergence and maximize

resource usage. (In general, a drawback of metaheuristics is that parameters must be

hand-tuned to achieve satisfactory performance. SARPA could also include a method

for automated parameter tuning to avoid hand-tuned parameters.)

Algorithm 6 is pseudocode for SARPA. Each searcher performs its designated role

based on its team. First, each searcher in the helicopter team constructs a partial

plan. A helicopter searcher initially begins its partial plan at the start node and

randomly selects an edge from it. The likelihood of edge selection is subject to

positive feedback, discussed below. The new node on that edge is appended to the

partial plan as a waypoint and the process repeats from there. To prevent cycles, a

helicopter plan never returns to a previously incorporated node. A helicopter searcher

continues until a time limit is exhausted, the last waypoint is the target, or there are

no unused edges from the last waypoint. As a helicopter searcher explores, it saves in

memory each visited node and the partial plan that reached it. Then, on subsequent

64



Algorithm 6: Search-and-rescue planning algorithm
Input: graph of the environment, robot’s and target’s locations, and
parameter values

Output: Best, a satisfactory plan
repeat until Best is satisfactory or search time is exhausted

for each helicopter searcher do
Construct a random partial plan until stopping condition is satisfied
Save visited nodes and partial plans

end
PH  the best quality helicopter complete plan
for each hasty searcher do

Select a plan from among the helicopter teams’ plans
Modify that plan until stopping condition is satisfied

end
PA  the best quality hasty complete plan
for each grid searcher do

Follow a random search pattern until stopping condition is satisfied
Save visited nodes and partial plans

end
PG  the best quality grid complete plan
for each dog-team searcher do

Select a plan from among the grid teams’ plans
Modify that plan until stopping condition is satisfied

end
PD  the best quality dog team complete plan
Update counters based on the hasty and dog teams
Best complete plan with maximum quality among (PH , PA, PG, PD)

return Best

iterations, a helicopter searcher randomly selects among any of its explored nodes and

randomly constructs a new plan from there. The best-quality complete helicopter plan

is saved as PH . For example, a helicopter searcher may construct a partial plan with

5 waypoints P1 = hs, w1, w2, w3, w4i on its first iteration. On the next iteration, it

randomly selects w3 from P1 and then combines the partial plan up to w3 and a new

expansion from w3 to produce a new partial plan P2 = hs, w1, w2, w3, w6, w7, w8, w9i.
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Next, SARPA calls in the hasty team. If any helicopter plans are complete, then

each hasty searcher selects among them, with selection likelihood in proportion to

the complete plan’s quality. Otherwise, each hasty searcher selects a partial plan at

random from the helicopter team. Then, each hasty searcher greedily modifies its

selected plan by randomly selecting one of three processes: extend, prune, or change.

To extend a partial plan, a searcher examines all the edges from its last waypoint and

adds the waypoint associated with the lowest cost edge. To prune a partial plan, a

searcher removes its last waypoints until there is some node with an alternative edge.

A searcher cannot extend to a pruned waypoint in the same iteration. Finally, to

change a partial plan, a searcher randomly selects two of its waypoints, constructs a

new sequence of waypoints that connects them, and replaces the original plan segment

with the new one if it has lower total edge cost. (If a plan is complete, a hasty searcher

can only change it.) A hasty searcher continues to extend, prune, or change until it

reaches a time limit or the last waypoint is the target. The best-quality complete

hasty plan is saved as PA.

Next, SARPA calls in the grid team. Each grid searcher uses one of five search

patterns inspired by real search-and-rescue strategies: parallel track, creeping line,

expanding square, sector, and contour (National Search and Rescue Council, 2017).

The track space is the distance between parts of the environment that are searched.

The search area boundary is the limits of the area being searched. The parallel track

search pattern, shown in Figure 8(a), explores along horizontally-aligned parallel lines

that are track space apart within the search area boundary. Shown in Figure 8(b),

creeping line is similar to the parallel track but searches along lines aligned with the

minor diagonal within the search area boundary. The expanding square search pattern

in Figure 8(c) explores in squares that gradually enlarge from a central location, with

track space between each square and the maximum expansion limited by the search
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(a) Parallel track
(b) Creeping line (c) Expanding square

(d) Sector
(e) Contour

Figure 8: Examples of SARPA’s search patterns modelled from (National Search and
Rescue Council, 2017, pp. 150–158). S is the track space

area boundary. The sector search pattern, shown in Figure 8(d), explores within a

circular area along segments. The size of the circle is determined by a radius and the

segment sizes are specified by an angular displacement. Finally, Figure 8(e) shows

the contour search pattern, which starts at a point and explores in a spiral up to the

search area boundary.

On each iteration, each grid searcher randomly selects one of the five search pat-

terns in Figure 8, and applies it within the preset search area boundary. Initially,

each grid searcher begins at the start node, but on subsequent iterations, grid search

begins at the node it ended at in the last iteration. To apply a search pattern, a

grid searcher extends its partial plan in the graph in the direction indicated by the

search pattern. For example, Figure 9 shows a grid searcher’s partial plan in a graph
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Figure 9: An example of the expanding square search pattern in a graph with a track
space of two and where the search area boundary is an 8 by 8 square

as it follows an expanding square pattern. A grid search stops when the searcher

has completed its search pattern, arrives at a node where no edge can continue the

pattern, or a time limit is exhausted. A grid searcher saves in memory each visited

node and the partial plan that reached it. The best-quality complete grid plan is

saved as PG.

Finally, SARPA calls in the dog team. If any grid plans are complete, then each

dog-team searcher selects among them, with selection likelihood in proportion to the

plan’s quality. Otherwise, each dog-team searcher selects a partial plan at random

from the grid team, and each dog-team searcher randomly either extends, prunes,

or changes its partial plan until it exhausts its time limit or the last waypoint is

the target. (If a plan is complete, a dog-team searcher can only change it.) The

best-quality complete dog-team plan is saved as PD. After all four search teams have

finished, Best is the complete plan with the best quality among PH , PA, PG and PD.

SARPA repeats this process until Best is satisfactory or search time is exhausted.
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Recall from Section 2.1 that groups of social beings display several collective be-

haviors: positive feedback, negative feedback, random fluctuations, and interactions

among individuals. SARPA applies these four characteristics to individual searchers.

Here, positive feedback encourages searchers to explore near members of the same

team in an effort to exploit knowledge from other searchers. Specifically, SARPA

searchers in the helicopter team will be more likely to visit a node if other helicopter

searchers have visited it. Similarly, hasty searchers will be more likely to visit a node

visited by other hasty searchers, as will dog-team searchers for a node visited by other

dog-team searchers.

Negative feedback in SARPA begins either when a searcher has had similar partial

plans for several iterations or when the number of nearby members of the same team

reaches a specified threshold. Like tabu search (Glover, 1989, 1990), negative feedback

temporarily forbids search to return to recent partial plans. This limits exploitation in

an effort to increase exploration. Helicopter, hasty, and dog-team searchers all record

the number of iterations they have devoted to partial plans with a high degrees of

similarity, where similarity is measured by the percentage of common waypoints.

They abandon a partial plan when it passes some threshold and are forced to explore

a new partial plan with low similarity to the one just abandoned. They also monitor

the number of searchers from their own team with similar partial plans. When the

number of searchers with similar partial plans surpasses a threshold, a searcher must

abandon its partial plan. In both cases, a searcher is prevented from returning to its

abandoned partial plan for a specified number of iterations.

With some small likelihood, random fluctuation explores a worse complete plan.

Specifically, the hasty and dog teams may occasionally select a complete plan of lower

quality, and a grid searcher may deviate from its search pattern. Random fluctua-

tions provide a way to escape from local optima. SARPA also includes interactions
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among individuals through the information shared between the two pairs of teams

(the helicopter team with the hasty team, and the grid team with the dog team).

SARPA draws inspiration from the two cognitive models of pedestrian movement

discussed in Section 2.1: trail formation and social force. To adapt the trail formation

model to SARPA, each node in the graph tallies the times it is visited by the hasty

team and the dog team. These counters have a maximum value and decay over time.

Hasty and dog-team searchers will be more likely to visit a node with a higher count.

Analagously, a grid searcher is more likely to deviate from the next node in its search

pattern when it has a high count. Thus, these counters encourage exploitation by the

hasty and dog teams and exploration by the grid team.

SARPA also integrates the social force model in the way searchers’ explore. Mem-

bers of the same team repel one another. For example, consider a searcher building its

partial plan, and about to add another node. If another searcher from the same team

is at a nearby node, then the likelihood that first searcher will select an edge that

moves it farther from second searcher would be increased, based on the social force

velocity parameter. This represents repulsive forces among pedestrians in the social

force model. It is counterbalanced by the hasty and dog-team searchers’ attractive

force towards better quality complete plans, grid searchers’ intention to follow the

search pattern, and helicopter searchers’ positive feedback. These repulsive forces

incorporate more exploration into SARPA.

In summary, SARPA is a novel swarm-based metaheuristic that draws from search-

and-rescue techniques and models of human-group behavior to explore a search space.

Each of its four teams of searchers has its own search strategy, and balances explo-

ration and exploitation. SARPA seeks a satisfactory plan to the target, and will be

evaluated empirically against other metaheuristics. SARPA could also be extended

to run its two pairs of teams in parallel or to apply bidirectional search.
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The last two subsections proposed tier-2 path planners for Situated-SemaFORR

that draw from human planning objectives. Two search algorithms were proposed to

use with these novel path planners (A* and SARPA), and the fine-to-coarse heuristic

could be applied to modify the graph for them. These proposed methods are intended

to improve navigation performance, and to incorporate human-like reasoning that

may facilitate natural human-robot interaction. The next subsection combines tier-3

Advisors with weight learning and voting to produce situated-decision strategies.

3.3.5 Apply weight learning and voting methods

A situated-decision strategy � either selects an action �a
h for a given situation Uh

or produces a plan �P
h for a given dynamic situation Dh. This subsection reviews

multiple approaches to learn situated-decision strategies for tier 3, which specialize

the robot’s behavior based on its (learned) situation. A situated-decision strategy is

learned only from successfully completed tasks.

The most basic approach for �a
h is to select the action most commonly taken

among the states in Uh. For example, if 30 states are clustered in Uh, and in 20 of

them the selected action was “move forward 1 meter”, then �a
h selects that action

whenever the robot is in Uh. This approach is fast, efficient, and will always produce

some �a
h. This approach can also be used online to update the �a

h after each decision.

This method, however, may not be optimal or even satisfactory; it simply repeats

the robot’s past behavior, whether or not that is worthwhile. Indeed, the first action

taken in a situation may have been a random choice. A better situated-decision

strategy would incorporate the robot’s objective to measure how well the strategy

performs.

One way to address this is to learn situation-specific weights for the Advisors.

Recall that cia is the comment strength of Advisor i on action a. Now, for a situation
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Uh, each tier-3 Advisor is given a weight ↵hi 2 [0,1] based on some criterion and then

an action is selected with weighted sum range voting

argmaxa2A

nX

i=1

↵hi ⇤ cia.

Ties will be broken at random.

There are several ways to learn the appropriate weights for a given situation. One

approach draws from Relative Support Weight Learning (RSWL), a method for weight

learning that was developed for a FORR-based system for constraint solving (Petrovic

and Epstein, 2006). RSWL first computed an Advisor’s relative support for an action

as the normalized difference between that Advisor’s value for that action and the

average value it assigned to all available actions. An Advisor is considered to support

an action if the relative support is positive, and oppose an action if it is negative.

RSWL determined whether an Advisor supported or opposed the action that was best

suited to solve the constraint problem and appropriately rewarded or penalized that

Advisor’s weight. RSWL can be adapted to SemaFORR to learn situated-decision

strategies. Here, a tier-3 Advisor’s relative support ⇢ia for an action a is ⇢ia =

(cia � c̄i)/�i where c̄i is the mean of Advisor i’s comment strengths and �i is their

standard deviation. Advisor i supports action a if ⇢ia > 0 and opposes it if ⇢ia < 0.

RSWL is a form of reinforcement learning, and thus it requires knowledge about

which actions to reinforce. One way to determine the “best” action � 2 A for a

situation is to select the action that would have brought the robot closest to the

nearest trail marker from the trail produced after that task, because a trail is usually

shorter than the original path and provides a more direct, albeit likely imperfect,

route to the target. Another way to identify � is to select the action that would have

brought the robot closest to the nearest waypoint in the direction of the target in
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the robot’s plan during that task. Then, given �, Advisors’ weights are increased if

they supported � and decreased if they opposed it. All Advisors would have the same

initial weight. This process is repeated for all the states in a situation. The final

learned weights would then be used with weighted sum range voting to determine �a
h

for that situation.

Instead of RSWL, a strategy could find the set of weights for the Advisors that

most often results in the Advisors selecting � for a given situation. Given a set of

weights, the action a0 that would be selected can be computed for each state in a

situation with weighted sum range voting. This strategy seeks the set of weights that

maximizes the number of states in Uh that would produce a0 = �. For example, if

30 states are clustered in Uh, and � was “move forward 2 meters”, then this strategy

learns the set of weights on the Advisors that would have resulted in the robot selecting

that action in as many of the 30 states as possible. A metaheuristic (e.g., simulated

annealing or a genetic algorithm) could be used to find the sets of weights for this

strategy. The final learned weights would then be used with weighted sum range

voting as the �a
h for a situation. Regardless of how the weights are learned, the set

of weights learned for one situation could be used as the initial weights for other

situations in the same condition.

Tier 3 uses sum range voting to select an action. Recall, however, the many voting

methods in Section 2.3. Since none is known to be the best, one possible approach

is to employ an ensemble of voting methods and select the action that wins the most

of them. Each voting method selects a winner, and then the action with the most

wins is selected as the overall winner. Any ties are broken at random. To the best of

this author’s knowledge no work thus far has employed such an ensemble of voting

methods.
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Both sum range and product range voting are readily applied to Advisors’ strengths.

Other voting methods, however, require some additional computation. To apply plu-

rality and majority, each Advisor votes only for the candidate to which it gave the

highest strength. With this formulation, the methods in Tables 1 and 2 can be ap-

plied. Ranking-based voting methods (Table 3) will rank candidates by their strength

in descending order and then use that ranking to select a winner. With some addi-

tional computation, the remaining voting methods (Tables 4 and 5) can also be used

here. In all, there are 20 different voting methods that can be used to decide which

candidate to select. An ensemble of voting methods would apply them all and se-

lect the winning candidate as the one selected by the most voting methods. This

meta-voting approach could balance the different fairness criteria associated with the

voting methods.

Weight learning for Advisors may be brittle because their comment strengths are

based on the same sensor inputs and spatial model. Two approaches could nonethe-

less apply voting to learn Advisor weights. The first would learn which voting method

selects the desired action � for a given situation; the one that most frequently selects

� for a situation is used as the voting method for that situation. Thus the �a
h uses dif-

ferent voting methods for different situations. The second approach assigns a weight

to each voting method so that the overall winner is selected as a weighted sum of the

winners from each voting method. The weights could be learned by a metaheuristic

to select � for a given situation, or they could be set by RSWL. For example, in an

RSWL approach, the weights for a voting method would be increased if it selected

the winner as �, and decreased if it did not.

An alternative approach to algorithmic weight learning and voting methods is to

weight the Advisors so that the robot is more human-like. One way is to bias the

Advisor weights to elicit certain kinds of human behavior (e.g., aggressive, cautious,
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or inquisitive). Another is to calculate weights from human behavior. Such a study

would observe subjects as they navigated to several targets in a simulated environ-

ment, and then use a metaheuristic to learn weights for the Advisors that most closely

mirror the subjects’ behavior in a situation. The resultant weight scheme would be

human-like. A second approach could show human subjects a situation, ask them to

select the action the robot should take in that situation, and assign Advisor weights

that would replicate human decisions. A third approach would be to show subjects a

robot as it navigates with different weight schemes, ask them to select the one that

looks most natural and transparent, and use those weights for the Advisors.

The situated-decision strategies discussed thus far select a single action for a

given vector or geometric situation. For a dynamic situation D, a situated-decision

strategy �P
h should select a sequence of actions, rather than a single action. For the

exemplars in the dynamic situation (e1, e2, . . . , el) 2 D, one approach is to combine

their respective strategies, �P
h = (�a

1,�
a
2, . . . ,�

a
l ). Then, whenever the robot is in

the first state in the dynamic situation, �P
h dictates that it follows that sequence of

actions. Another approach is to find the sequence of actions that most quickly brings

the robot from e1 to el in D and prescribe that sequence as the �P
h for that dynamic

situation.

This subsection has identified several potential approaches to learn situated-decision

strategies. It has also described potential human-subject studies to examine how

people balance various decision-making rationales during navigation. Finally, it dis-

cussed methods that produce a situated-decision strategy for a dynamic situation.

These methods should allow Situated-SemaFORR to balance its Advisors in a more

intuitive and natural way.
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Figure 10: Situated-SemaFORR’s architecture with situated-decision strategies. Pro-
posed work introduced in this section is indicated in uppercase.

3.3.6 Preliminary work

After each task, situations will be learned and then situated-decision strategies will

be learned. Figure 10 shows the architecture with the situated-decision strategies

incorporated. After situated-decision strategies are learned, the appropriate weights

or voting methods are applied based on the robot’s current situation before a decision

is made.

In preparation for situated-decision strategies, I have implemented several of the

proposed tier-3 Advisors, including Curiosity, LearnSpatialModel, Access,

EnterDoor, and ExitDoor. I have also parameterized the configuration of Ad-

visors in SemaFORR, which has streamlined the implementation and testing of new

Advisors.
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This section has described new tier-2 and tier-3 Advisors, proffered a new meta-

heuristic for path planning, and proposed approaches to learn situated-decision strate-

gies. Situated-SemaFORR should be more human-like and cognitively plausible be-

cause it draws upon weight learning, voting methods, and cognitive science to balance

its various decision-making rationales. This suggests that Situated-SemaFORR will

be better suited for collaborative navigation and its behavior will be more transparent

to human collaborators. It is difficult to predict a priori that the result will empirically

improve collaborative navigation, although related HRI work suggests that there will

be an improvement when a robot’s behavior is more comfortable, sociable, and natu-

ral. The next chapter describes how Situated-SemaFORR could explain its reasoning

in natural language, and how the proposed work will be evaluated.
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4. Proposed work: explanation and evaluation

The previous chapter proposed work inspired by cognitive science and HRI to make

a robot’s behavior more human-like and transparent. Effective collaboration between

a robot and a person, however, also requires natural communication. When a robot

travels with a human companion, the robot should be able to explain its navigation

behavior in natural language. This chapter describes several methods I developed to

explain Situated-SemaFORR’s behavior in natural language, based upon the robot’s

commonsense, its qualitative reasoning, and its learned spatial model. These methods

explain a robot’s reactive decisions, its plans, and learned situations. The chapter

concludes with a proposed evaluation plan.

4.1 Apply meaningful semantics

To build trust and understanding in its human collaborator, a robot should pro-

duce natural explanations, human-friendly reasons for its behavior in natural lan-

guage (Kulesza et al., 2013). Such transparent, intelligible communication enables

the robot to gain social acceptance and reduce confusion about its abilities. A nat-

ural explanation is more than a description of an event or a summary of the event’s

causes. Rather, such an explanation compares counterfactual cases, is selective about

which causes are included, and recognizes that the human companion is a social being

with her own beliefs and intentions (Miller, 2017). Situated-SemaFORR’s cognitive

basis facilitates its ability to provide natural explanations for its underlying deci-

sion making mechanism. This section describes Why-Decision to explain Situated-

SemaFORR’s reactive reasoning and Why-Plan to explain Situated-SemaFORR’s

navigation plans. It also describes how these will be combined to create Why, a

general explanation mechanism for Situated-SemaFORR that also addresses learned
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situations and their associated strategies. Why is more broadly applicable, however,

and could give natural explanations for other robot controllers.

4.1.1 Why-Decision

Why-Decision explains a reactive navigation decision in natural language. It an-

ticipates three likely questions from a human companion: “Why did you decide to

do that?” “Why not do something else?” and “How sure are you that this is the

right decision?” Why-Decision exploits Situated-SemaFORR’s reasoning hierarchy

and decision rationales to generate natural explanations in response to these three

questions. The result is a rich, varied set of natural explanations. Why-Decision

interprets SemaFORR’s cognitive foundation to bridge the perceptual and represen-

tational gap between human and robot navigators. Why-Decision and Situated-

SemaFORR could accompany any robot controller to provide natural explanations.

Why-Decision has already been implemented as Why in Korpan et al. (2017). This

subsection describes its preliminary implementation and then proposes extensions and

improvements.

The first likely question asks why the robot chose a particular action. Why-

Decision constructs its answer from the rationales and comments of the Advisors

responsible for that choice, with templates to translate actions, comments, and deci-

sions into natural language. Given the robot’s current pose, Why-Decision maps

each possible action onto a descriptive phrase for use in any [action] field. Examples

include “wait” for a forward move of 0.0 meters, “inch forward” for a forward move of

0.2 meters, and “shift right a bit” for a turn in place of 0.25 radians.

Algorithm 7 is pseudocode for Why-Decision’s explanation procedure for the

first question. It takes as input the current situated state, target location, and spa-

tial model, and then calculates its response based on the comments from Situated-
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Algorithm 7: Why-Decision’s explanation procedure
Input: situated state, target location, spatial model
Output: explanation
switch mode(decision) do

case tier 1 decides action do
explanation  sentence based on Victory or Enforcer

case only 1 unvetoed action remains after tier 1 do
explanation  sentence based on vetoes from AvoidWalls

otherwise do
Compute relative support for tier-3 Advisors’ strengths
Categorize the support level for the chosen action
Complete template for each Advisor with its support level and rationale
explanation  combined completed templates

end
end
return explanation

SemaFORR’s Advisors. There are three possibilities: tier 1 chose the action, tier 1

left only one unvetoed action, or tier 3 chose the action. Situated-SemaFORR only

makes a decision in tier 1 if Victory or Enforcer mandates it or AvoidWalls

has vetoed all actions but the pause. NotOpposite will never select the robot’s

action because it can never veto more than half the turns. The applicable templates

in those cases are “I could see our [target/waypoint] and [action] would get us closer

to it” and “I decided to wait because there’s not enough room to move forward.”

The inherent uncertainty and complexity of a tier-3 decision, however, requires a

more nuanced explanation. Recall, cia 2 [0, 10] is the comment strength of Advisor

i on action a. Recall also that a tier-3 Advisor’s relative support ⇢ia for an action

a is ⇢ia = (cia � c̄i)/�i where c̄i is the mean of Advisor i’s comment strengths and

�i is their standard deviation. (This is not a z-score because sampled values replace

the unavailable true population mean and standard deviation.) Why-Decision can

compare different Advisors’ relative support because they have common mean 0 and

standard deviation 1. If |⇢ia| is large, Advisor i has a strong opinion about action
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cia ⇢ia
Tier-3 Advisors a1 a2 a3 a4 a1 a2 a3 a4

1 0 1 1 10 -0.64 -0.43 -0.43 1.49
2 0 8 9 10 -1.48 0.27 0.49 0.71
3 2 0 10 2 -0.34 -0.79 1.47 -0.34
4 3 10 1 0 -0.11 1.44 -0.55 -0.78
C 5 19 21 22

Table 13: Example of comments from tier-3 Advisors i = 1, 2, 3, 4 on actions
a1, a2, a3, a4, where cia is the comment strength and ⇢ia is relative support

a relative to the other actions; this opinion supports a if ⇢ia > 0 and opposes it if

⇢ia < 0.

Table 13 provides a running example. It shows the original comment strengths

from four tier-3 Advisors (i = 1, 2, 3, 4) on four actions (a1, a2, a3, a4), and the total

comment strength C for each action. Tier 3 chooses action a4 because it has maximum

support. While Advisors 1 and 2 support a4 with equal strength, the relative support

values tell a different story: Advisor 1 prefers a4 much more (⇢14 = 1.49) than Advisor

2 does (⇢24 = 0.71). Moreover, Advisors 3 and 4 actually oppose a4 (�0.34 and �0.78,
respectively).

Each measure in Table 14 was assigned a descriptive natural language phrase

and a partition of the real numbers into three intervals. The partition allows Why-

Decision to hedge in its responses, much the way people explain their reasoning when

they are uncertain (Markkanen and Schröder, 1997). For example, Why-Decision

maps the relative support values into three intervals. For a4 in the running example,

Advisor 1’s relative support of 1.49 is translated as “want” and Advisor 4’s -0.78 is

translated as “don’t want”. Why-Decision then completes the clause template “I

[phrase] to [rationale]” for each Advisor based on Table 14 and less model-specific

language from Table 7. For example, if Advisor 1 were Greedy in the running

example, then the completed clause template for a4 would be “I want to get close to
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relative support ⇢ia  0:
opposed

(�1,�1.5] really don’t want
(�1.5,�0.75] don’t want
(�0.75, 0] somewhat don’t want

relative support ⇢ia > 0:
supportive

(0, 0.75] somewhat want
(0.75, 1.5] want
(1.5,+1) really want

Level of agreement �a

(0.45, 0.5] My reasons conflict
(0.25, 0.45] I’ve only got a few reasons
[0, 0.25] I’ve got many reasons

Overall support ⇣a

(�1, 0.75] don’t really want
(0.75, 1.5] somewhat want
(1.5,+1) really want

Confidence level ⇤a

(�1, 0.0375] not
(0.0375, 0.375] only somewhat
(0.375,+1) really

Difference in overall support
⇣a � ⇣a0

(0, 0.75] slightly more
(0.75, 1.5] more
(1.5,+1) much more

Table 14: Phrase mappings from value intervals to language

the target.” Any references to the target will be modified to a waypoint if there is an

active plan selected by tier 2.

Finally, Why-Decision combines completed clause templates into a final tier-

3 explanation, but omits language from Advisors with relative support values in

(�0.75, 0.75] because they contribute relatively little to the decision. Why-Decision

concatenates the remaining language with appropriate punctuation and conjunctions

to produce its tier-3 explanation: “(Although [language from opposed Advisors], )

I decided to [action] because [language from supporting Advisors]”. The portion

in parentheses is omitted if no opposition qualifies. If the Advisors in the running

example were Greedy, ElbowRoom, Convey, and Explorer, in that order, and

a4 were move forward 1.6 m, then the natural explanation is “Although I don’t want

to go somewhere I’ve been, I decided to move forward a lot because I want to get
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close to our target.” (Note that support from Advisors 2 and 3 fails the -0.75 filter

and so they are excluded.)

This approach can also respond to “What action would you take if you were in

another context?” Given the situated state and the target location, Why-Decision

would reuse its current spatial model, generate hypothetical comments, and process

them in the same way. The sentence template would substitute “I would [action]” for

“I decided to [action]."

The second likely question from a human collaborator is about the robot’s confi-

dence in its decision, that is, to what extent it believes its decision will help reach the

target. Again, Why-Decision responds based on the tier that selected the action

with a procedure similar to Algorithm 7. Tier 1’s rule-based choices are by definition

highly confident. If Victory or Enforcer chose the action then the response is

“Highly confident, since [our target/the next waypoint in our plan] is in sensor range

and this would get us closer to it.” If AvoidWalls vetoed all forward moves except

the pause, then the explanation is “Highly confident, since there is not enough room

to move forward.”

Again, tier-3’s uncertainty and complexity require more nuanced language, this

time with two measures: level of agreement and overall support. The extent to which

the tier-3 Advisors agree indicates how strongly the robot would like to take the

action. Why-Decision measures the level of that agreement with Gini impurity,

where values near 0 indicate a high level of agreement and values near 0.5 indicate

disagreement (Hastie et al., 2009). For n tier-3 Advisors and maximum comment

strength 10, the level of agreement �a 2 [0,0.5] on action a is defined as

�a = 2 ·
Pn

i=1 cia
10n

�
·

1�

Pn
i=1 cia
10n

�
.
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In the running example of Table 13, the level of agreement on a4 is

�4 = 2 ·

22

40

�
·

1� 22

40

�
⇡ 0.50.

This indicates considerable disagreement among the Advisors in Table 13.

The second confidence measure is Situated-SemaFORR’s overall support for its

chosen action compared to other possibilities, defined as a t-statistic across all tier-3

comments. Let µC be the mean total strength C of all actions under consideration

by tier 3, and �C be their standard deviation. The overall support for action a is

⇣a = (Ca�µC)/�C. ⇣a indicates how much more the Advisors as a group would like to

perform a than the other actions. In Table 13, the overall support ⇣4 for a4 is 0.66,

which indicates only some support for a4 over the other actions.

Why-Decision weights level of agreement and overall support equally to gauge

the robot’s confidence in a tier-3 decision with confidence level ⇤a = (0.5��a) · ⇣a for

a. It then maps each of ⇤a, �a, and ⇣a to one of three intervals and then to natural

language, as in Table 14, with implicit labels low < medium < high in order for each

statistic. Two statistics agree if they have the same label; one statistic is lower than

the other if its label precedes the other’s in the ordering.

All responses to this question use a template that begins “I’m [⇤a adverb] sure

because....” If �a and ⇣a both agree with ⇤a, the template continues “[�a phrase].

[⇣a phrase].” For example, “I’m really sure about my decision because I’ve got many

reasons for it. I really want to do this the most.” If only one statistic agrees with ⇤a,

the template continues “[phrase for whichever of �a or ⇣a agrees].” For example, “I’m

not sure about my decision because my reasons conflict.” Finally, if neither statistic

agrees with ⇤a, it concludes “even though [phrase for whichever of �a or ⇣a is lower

than ⇤a], [�a phrase or ⇣a phrase for whichever is higher than ⇤a].” For example,
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“I am only somewhat sure about my decision because, even though I’ve got many

reasons, I don’t really want to do this the most.” For a4 in Table 13, ⇤4 is near 0,

�4 = 0.50, and ⇣4 = 0.66. This produces the natural explanation “I’m not sure about

my decision because my reasons conflict. I don’t really want to do this more than

anything else.”

A human collaborator makes decisions with her own mental model of the environ-

ment. When her decision conflicts with another team member’s, she tries to under-

stand why they made a different decision. Why-Decision can also explain Situated-

SemaFORR’s preference for action a over an alternative a0 with a procedure similar

to Algorithm 7. If tier 1 chose a, the explanation uses Victory or Enforcer’s

rationale: “I decided not to [action a0] because I detect our [target/waypoint] and

another action would get us closer to it.” If AvoidWalls or NotOpposite vetoed

a0, then the natural explanation is “I decided not to [action a0] because [rationale from

Advisor that vetoed it].”

The other possibility is that a0 had lower total strength in tier 3 than a did. In this

case, Why-Decision generates a natural explanation with the tier-3 Advisors that,

by their comment strengths, discriminated most between the two actions. Why-

Decision calculates ⇢ia � ⇢ia0 for each Advisor i. If the result lies in [-1, 1] then i’s

support is similar for a and a0; otherwise Advisor i displays a clear preference. The

natural explanation includes only those Advisors with clear preferences.

The explanation template is “I thought about [action a0] (because it would let

us [rationales from Advisors that prefer action a0]), but I felt [phrase] strongly about

[action a] since it lets us [rationales from Advisors that prefer action a].” The [phrase]

is the extent to which Situated-SemaFORR prefers a to a0. It is selected based on

⇣a � ⇣a0 , the difference in the actions’ overall support, and mapped into intervals as

in Table 14. The portion in parentheses is only included if any Advisors showed a
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clear preference for action a0. For “Why didn’t you take action a2?” on the running

example, Why-Decision calculates the difference in overall support between a4 and

a2 at 0.38, which maps in Table 14 to “slightly more.” The differences in relative

support between a4 and a2 for the four Advisors are 1.92, 0.44, 0.45, and -2.22. Thus,

if Advisor 1 is Greedy and prefers a4, while Advisor 4 is Explorer and prefers a2,

the natural explanation is “I thought about a2 because it would let us go somewhere

new, but I felt slightly more strongly about a4 since it lets us get closer to our target.”

In summary, Why-Decision produces natural explanations for a robot’s navi-

gation decisions as it travels through a complex environment. These explanations

are essential for collaborative navigation and are made possible by the robot con-

troller’s cognitively-based reasoning. The approach presented here generates expla-

nations that gauge the robot’s confidence and give reasons to take an action or to

prefer one action over another. As a result, a human companion receives informa-

tive, user-friendly explanations from a robot as they travel together. Why-Decision

will be extended to include the new tier-3 Advisors introduced in Section 3.3. This

requires development of human-friendly descriptions for each tier-3 Advisor’s ratio-

nale. Why-Decision will also require modification for different voting methods to

select an action in tier-3, since the current approach assumes the use of sum range

voting. Finally, Why-Decision will be able to ignore any weights that are applied

to tier-3 Advisors because the weights ↵hi 2 [0, 1] do not change the range of the Ad-

visors’ comment strengths cia 2 [0, 10]. The next subsection describes Why-Plan,

which compares the perspectives of an autonomous robot and a person to produce

meaningful, human-friendly explanations of Situated-SemaFORR’s plans.

86



4.1.2 Why-Plan

Why-Plan exploits differences among robot controllers’ objectives to produce clear,

concise natural explanations for a plan quickly. Why-Plan addresses the question

“Why does your plan go this way?” Given a plan P , Situated-SemaFORR’s Advisors

determine how to travel from one waypoint to the next. Why-Plan addresses P to

explain, in natural language, the robot’s long-range perspective. The initial version of

Why-Plan was reported in Korpan and Epstein (2018). This subsection describes

that implementation and then proposes extensions and improvements.

Human and robot plans to arrive at the same goal may differ because they do not

capitalize on the same objective. The premise of Why-Plan is that a human plans

from one perspective, objective OM , while the robot plans from another perspective,

objective OR. As a running example, OM is “take the shortest path” and OR is the

objective of CSA* (described in Section 3.3).

A question about the robot’s plan could arise anywhere along its intended path.

Algorithm 8 is pseudocode for Why-Plan’s explanation procedure. Recall that a

robot’s decision state d includes its pose, and the obstacles its sensors currently detect.

Why-Plan takes as input the target location t, the robot’s current decision state d,

its planning objective OR, and an alternative planning objective OM attributed to

the human questioner. It is assumed that the robot and the person share knowledge

relevant to OR and OM (e.g., distances and crowding). This allows the robot to

construct two plans: its own plan PR based on OR, and PM , the robot’s approximation

of the human’s implicit plan, based on OM .

To compare PR with PM , Why-Plan applies both OR and OM as metrics. Let

M(P ) measure OM for a plan (e.g., its length if OM is shortest path), and let R(P )

measure a plan under OR (e.g., crowd sensitivity). Why-Plan translates its objec-
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Algorithm 8: Why-Plan’s explanation procedure
Input: decision state, target location, planning objectives OR and OM

Output: explanation
Compute plan PR based on OR

Compute plan PM based on OM

�R = R(PR)�R(PM)
�M = M(PR)�M(PM)
switch mode(�R, �M) do

case �R = �M = 0 do
explanation  sentence based on template for equivalent plans

case �R < 0 and �M = 0 do
explanation  sentence based on OR (e.g., crowd density)

case �R < 0 and �M > 0 do
explanation  sentence based on OR and OM (e.g., crowd density and
length)

end
return explanation

tives into natural language with a descriptor: M for OM and R for OR. In the

example, M is “short” and R is “crowded.” Each objective O is also associated with

user-specified numeric intervals that assign a descriptive natural language phrase nl

to a difference � between two plans’ measures under O, as in Table 15. These ranges

represent a human perspective on the objective.

Why-Plan calculates the difference in the plans from both perspectives. �M =

M(PR)�M(PM) is their difference from the human’s perspective (e.g., length), and

�R = R(PR)�R(PM) is their difference from the robot’s perspective (e.g., crowded-

(�1,�1500] a lot
nlR for OR = crowd-sensitive (�1500,�500] somewhat

(�500, 0) a bit

(0, 1] a bit
nlM for OM = short distance (1, 10] somewhat

(10,+1) a lot

Table 15: Mappings from value intervals to language
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Figure 11: Why-Plan answers, “Although there may be a somewhat shorter way, I
think my way is a lot less crowded.” (Korpan and Epstein, 2018, p. 1)

ness). There are several possible cases, each with its own language template. If both

�M and �R are 0, then the plans equally address the two objectives, and Why-Plan

explains “I decided to go this way because I think it’s just as M and equally R.”

Otherwise, the plans differ with respect to one or both objectives. If �R is negative

(e.g., PR is more crowd-sensitive), then Why-Plan uses the template “(Although

there may be a hnlMi 0
M way,) I think my way is hnlRi 0

R” where 0
M and 0

R are

comparators for M and R, respectively (e.g., “shorter” and “less crowded”). Why-

Plan omits the parenthetical statement if �M = 0. Other cases, where �M < 0 or

�R > 0, cannot occur under the shared knowledge assumption.

Figure 11 illustrates an example for Why-Plan, where the robot (black box)

faced in the direction of the arrow, its goal was the star, darker shading indicates

more crowding, and �R = �6729 and �M = 9.6. Here, PR (solid line) goes down to

avoid the crowd, while PM (dotted line) takes a shorter path through the crowd. In

response to “Why does your plan go this way?” the robot explained, “Although there

may be a somewhat shorter way, I think my way is a lot less crowded.”
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Why-Plan will be expanded to answer other important questions not yet ad-

dressed, such as “Why doesn’t your plan go that way?”, “What makes your plan

better than mine?”, “What’s another way we could go?”, and “How sure are you about

your plan?” Each question will be answered based on comparison of the objectives.

To respond to “Why doesn’t your plan go that way?”, Why-Plan will compute a new

plan P 0
R based on OR that is forced to adhere to the direction indicated by the human

collaborator. Next, it will compute�R = R(PR)�R(P 0
R) and�M = M(PR)�M(P 0

R).

Why-Plan will then respond based on these two measures with the template “(Al-

though that way may be a hnlMi 0
M ,) I think my way is hnlRi 0

R.” Why-Plan will

omit the parenthetical statement if �M  0.

Why-Plan will also address the question “What makes your plan better than

mine?” First, Why-Plan will compute �M = M(PR)�M(PM) and �R = R(PR)�
R(PM). If both �M and �R are 0, then Why-Plan will explain “I think both plans

are equally good.” Otherwise, Why-Plan will respond with the template “I think

my way is better because it’s hnlRi 0
R.”

The third question is “What’s another way we could go?” Why-Plan’s response

would require a more nuanced approach. There are two possible responses, either

provide PM as the alternative plan or produce a new plan P 0
R that is sufficiently

different from PR. In the first case, Why-Plan will respond “We could go that

way since it’s hnlMi 0
M but it could also be hnlRi 00

R” where 00
R is an opposite

comparator for R (e.g., “more crowded”). If both �M and �R are 0, then Why-

Plan will respond based on a new plan P 0
R. Why-Plan will compute P 0

R based on

OR with the restriction that P 0
R’s similarity to PR is not above some threshold, where

similarity is measured by the percentage of their common waypoints. Why-Plan

will then compute �R = R(PR)�R(P 0
R) and �M = M(PR)�M(P 0

R), and use those
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�M =
(10,+1) (1, 10] (0, 1]

�R =
(�1,�1500] only somewhat really really
(�1500,�500] not only somewhat really

(�500, 0) not not only somewhat

Table 16: Mapping from �R and �M intervals to confidence level phrases

values to respond with the template “We could go that way but it’s hnlMi 00
M and

hnlRi 00
R” where where 00

M is an opposite comparator for M (e.g., “longer”).

Why-Plan will also address a fourth question: “How sure are you about your

plan?” To respond, Why-Plan will analyze and explain its confidence in its objec-

tive. It first compares the magnitude of �R with that of �M and then uses that

to decide its confidence in the plan PR. Table 15 partitions the values of �R and

�M into three intervals. Why-Plan will explain the robot’s confidence by where in

these intervals the differences �R and �M lie. The combination will produce a phrase

in natural language as shown in Table 16. All responses to this question will use a

template that begins “I’m [confidence level phrase] sure because....” If the confidence

level phrase is “really”, the template will continue “my plan is hnlRi 0
R and only hnlMi

00
M than your plan.” If the confidence level phrase is “only somewhat”, the template

will continue “even though my plan is hnlRi 0
R, it is also hnlMi 00

M than your plan.”

Finally, if the confidence level phrase is “not”, the template will continue “my plan is

hnlMi 00
M than your plan and only hnlRi 0

R.”

In summary, Why-Plan will produce natural explanations for a robot’s plan as

it travels through a complex environment. These explanations are essential in collab-

orative navigation and are made possible through consideration of its collaborator’s

objective. The approach presented here will generate explanations for the robot’s

plan, respond to questions about alternative plans, and provide a confidence level

for its plan. Why-Plan does not show a visual representation of the plan before it
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responds with an explanation because it would likely cause cognitive overload (e.g.,

how does the map align to the person’s perspective of the environment) and require

additional explanations (e.g., for all the symbols and labels on the image).

Why-Plan will be extended to include the new tier-2 planners introduced in Sec-

tion 3.3. This includes development of human-friendly descriptions for each planner’s

objective. Why-Plan will also require modification for the proposed multi-objective

planning, since the current approach assumes the use of a single planner. One pos-

sibility is to assign the robot’s objective in Why-Plan to be the objective for the

planner that was selected by sum range voting, and make the human’s objective

the one the selected planner performed worst on. Alternatively, Why-Plan could

combine all the objectives in a single explanation (e.g. “Although there may be a

somewhat shorter and less risky way, I think my way is somewhat less crowded and

a lot more smooth”). The next subsection proposes Why, which combines Why-

Decision and Why-Plan to produce meaningful, human-friendly explanations of

Situated-SemaFORR’s situations and situated-decision strategies.

4.1.3 Why

Why will combine the explanations of Situated-SemaFORR’s reactivity and delibera-

tion into a single coherent narrative that includes an explanation of the robot’s current

situation and how its situated-decision strategy for that situation influenced its be-

havior. Why is not intended to be a general dialogue system, rather, it will provide

natural explanations for the system’s hybrid, hierarchical decision making. This sub-

section first discusses ways in which Why-Decision and Why-Plan could be com-

bined. It then describes how Why’s explanations will address Situated-SemaFORR’s

situations and situated-decision strategies.
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Why will generally address questions from a human collaborator about Situated-

SemaFORR’s reasoning. Although Why will continuously generate explanations, it

will only provide an explanation when asked. One way to combine Why-Decision

and Why-Plan is to concatenate their responses to address both reactivity and

deliberation. In this approach, Why combines Why-Decision’s response to “Why

did you decide to do that?” with Why-Plan’s response to “Why does your plan

go this way?” to respond to “Why did you do that?” with the template “Generally,

[Why-Plan’s response]. Specifically, right now, [Why-Decision’s response].” For

example, Why’s response with this template could be “Generally, although there may

be a somewhat shorter way, I think my way is a lot less crowded. Specifically, right

now, although I don’t want to go somewhere I’ve been, I decided to move forward a

lot because I want to get close to our waypoint.” This response would provide both

the long-range perspective and explain the immediate reactive decision.

In this first approach, Why will similarly respond to the question “How sure

are you about what you are doing?” with a template that combines the responses

of the two components. The response will depend on the agreement between the

confidence level phrase from Why-Decision and Why-Plan. If the phrase is the

same (i.e., both are “really”) then the template is “[Why-Decision’s response]. Also,

[Why-Plan’s response].” If the phrases differ then the response will acknowledge

that difference based on which has higher confidence (with the order defined as “re-

ally” > “only somewhat” > “not”). The template in that case is “Although [response

from component with higher confidence], [response from component with lower con-

fidence].”

Why will also respond to other questions with the appropriate response from

either Why-Decision or Why-Plan. It will not combine the responses because

the questions are specifically related to the robot’s reactive decision or its plan, not
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both. For example, Why-Decision would answer “Why didn’t you turn left?” and

it would not be appropriate to also include Why-Plan’s response to “Why doesn’t

your plan go that way?”

A second way to combine Why-Decision and Why-Plan is based on the expec-

tations of a human companion. In this approach, Why would provide the explanation

from Why-Plan by default, and only provide an explanation from Why-Decision

if the person asks a follow-up question. This approach assumes that people are more

concerned with the robot’s long-range plan because people may not be able to rec-

ognize individual actions or distinguish when one finishes and the next one starts.

Additionally, people may only ask about an individual decision when it clearly vio-

lates their expectations or knowledge. Since this proposal has argued that Situated-

SemaFORR’s cognitive basis will enable a robot to move naturally and sociably, such

violations should happen infrequently, and so explanations for individual decisions

should rarely be needed.

A third way to construct Why exploits the mechanism by which a human com-

panion requests an explanation. Why could, for example, display the questions and

have the person select one. In that case, Why would not combine explanations; it

could just produce the appropriate response to the selected question. In this case,

the phrasing of the questions may need to be revised based on human feedback.

The above approaches would allow Why to explain both reactive decisions and

a plan with one response. That approach will be used if the robot has not yet

learned situated-decision strategies. Why will also explain a learned situation and

its associated situated-decision strategy in natural language. It will respond to “Why

did you do that?” with the template “When [situation Uh], [situated-decision strategy

�h].” A situation will be explained with the features that distinguish it from other
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e1 e2 e3 (e1 � e2) (e1 � e3) average difference
f1 2.7 9.1 1.9 -6.4 0.8 -2.80
f2 1.3 6.9 8.7 -5.6 -7.4 -6.50
f3 5.6 1.6 1.5 4.0 4.1 4.05
f4 8.6 0.4 3.5 8.2 5.1 6.65

Table 17: An example that distinguishes the situation with exemplar e1 from two
other situations

situations. To explain a situated-decision strategy, Why will provide an explanation

of the weight learning algorithm or voting method that was used for that situation.

The features with values most different from the other situations are used to

explain a situation. First, the exemplar eh for the situation Uh will be compared to

the exemplars for all other situations. For each feature fj, the difference between

the feature’s value in eh and the values for the other exemplars will be computed,

and the differences for each feature averaged. Those features with the largest average

differences will then be used to explain the situation. Table 17 provides a running

example, with four features (f1, f2, f3, f4), their values for three exemplars (e1, e2, e3),

and the feature-value differences among e1, e2, and e3. The average difference in the

feature values shows that e1 differs from the other exemplars most along the features

f2 and f4.

A situation-based explanation will identify the features that most distinguish the

exemplar, map their differences to descriptors for the magnitude of the difference,

and combine them with a natural-language description of each feature. For example,

in Table 17 if f2 is distance to a high frequency conveyor and f4 is distance to the

nearest obstacle, then the explanation in the situation with exemplar e1 would be

“We’re really close to a familiar place and really far from our nearest obstacle.” As

in my earlier work, the natural language descriptions for features and mappings for
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their differences will be selected empirically. The number of features to include and

the similarity of the selected features would also need to be considered.

The explanation for a situated-decision strategy will depend upon the method used

to learn it. If weight learning were used, then Why will explain based on the Advisors

whose weights have the highest values. For example, if Greedy and Trailer had

the largest weights, then the explanation would be “It’s best to move closer toward

our target and follow a way we’ve gone before.” If a voting strategy were used, Why

would identify the Advisors that most contributed to the final tally (i.e., those which

were dictatorial) and use them.

Finally, Why will combine the explanations for the situation and situated-decision

strategy. In the running example this could be “When we’re really close to a familiar

place and really far from our nearest obstacle, it’s best to move closer toward our

target and follow a way we’ve gone before.” Why will potentially provide many varied

and nuanced explanations for Situated-SemaFORR. Such explanations, however, will

require consideration of length, naturalness, and understandability based on human

evaluation. Descriptions for geometric situations could also be similarly constructed

or a human-imposed label could be applied.

Why could also incorporate more varied language in its descriptions and tem-

plates. One way would be to use methods from natural language generation that

probabilistically vary text so that it is more natural and less repetitive (Gatt and

Krahmer, 2018). This approach would forgo language templates and instead gener-

ate the full text responses. Why could also use a natural explanation for a learned

condition C as the basis for explanations for the condition’s member situations.

In summary, Why will combine Why-Decision and Why-Plan to respond more

generally to questions about Situated-SemaFORR’s reasoning process. It will also ex-
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plain Situated-SemaFORR’s learned situations and their situated-decision strategies.

The next section reviews preliminary results on Why-Decision and Why-Plan.

4.1.4 Preliminary work

This subsection reviews preliminary simulation results from Why-Decision and

Why-Plan. The many distinct natural explanations simulate people’s ability to

vary their explanations based on their context (Malle, 1999). How to incorporate

Why into the architecture is also addressed.

Why-Decision is implemented as a ROS package and explains navigation deci-

sions in real time. It was evaluated in a MengeROS simulation for a real-world robot

(Fetch Robotics’ Freight). Why-Decision averaged less than 3 msec per explanation

when the robot navigated to 230 destinations in the complex 60m⇥90m office envi-

ronment of Figure 12. Initial results show that this approach is efficient and nuanced.

Table 18 provides further details. The Coleman-Liau index measures text readability;

it gauged Why-Decision’s explanations over all three questions at approximately

a 6th-grade level (Coleman and Liau, 1975), and thus readily understandable to a

layperson.

Figure 12: Tenth floor of Hunter College’s North Building
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Tier where decision was made 1 3 All
Number of decisions 22,982 84,920 107,902
Average computation time (ms) 0.45 3.08 2.52
Number of unique phrasings
Why did you decide to do that? 14 31,896 31,910
How sure are you? 2 11 13
Why not do something else? 19 124,086 124,105
Total 35 155,993 156,028
Average readability
Why did you decide to do that? 8.18 5.02 5.70
How sure are you? 10.39 7.63 8.22
Why not do something else? 3.91 6.44 5.96
Overall 5.36 6.41 6.21

Table 18: Preliminary results for Why-Decision in simulation

For action a chosen in tier 3 and every possible alternative a0, Table 19 shows how

often the values of �a, ⇣a, ⇤a, ⇢ia � ⇢ia0 , and ⇣a � ⇣a0 fell in their respective Table 14

intervals. The Advisors disagreed (�a > 0.45) on 67.15% of decisions. Strong overall

support (⇣a > 1.5) made SemaFORR strongly confident in 2.44% of its decisions

(⇤a > 0.375) and somewhat confident in 42.64% of them. When asked about an

alternative, individual Advisors clearly preferred (⇢ia� ⇢ia0 > 1) the original decision

39.50% of the time; SemaFORR itself declared a strong preference (⇣a � ⇣a0 > 1.5)

between the two actions 61.13% of the time.

Table 20 illustrates Why-Decision’s robust ability to provide nuanced explana-

tions for tier-3 decisions. The target appears as an asterisk and the black box and

Low Medium High
Level of agreement �a 67.15% 30.41% 2.44%
Overall support ⇣a 2.34% 60.09% 37.57%
Confidence level ⇤a 54.92% 42.64% 2.44%
Difference in relative support ⇢ia � ⇢ia0 16.09% 44.41% 39.50%
Difference in overall support ⇣a � ⇣a0 18.48% 20.40% 61.13%

Table 19: Why-Decision’s metric distributions by interval in tier-3 decisions
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Robot’s State

Why did you do that?
Although I don’t
want to go close to
that wall, I decided
to bear right because
I really want to take
a big step.

Although I don’t
want to turn to-
wards this wall, I
decided to turn right
because I want to go
somewhere familiar,
I want to get close
to our target, and
I want to follow a
familiar route that
gets me closer to our
target.

Although I really
don’t want to go
close to that wall
and I really don’t
want to get farther
from our target, I
decided to move for-
ward a lot because I
really want to go to
an area I’ve been to
a lot, I really want
to take a big step,
and I really want to
go somewhere new.

Although I don’t
want to get farther
from our target, I
decided to bear left
because I really want
to go somewhere
familiar and I want
to leave since our
target isn’t here.

How sure are you?
I’m not sure because
my reasons conflict.

I’m only somewhat
sure because, even
though my reasons
conflict, I really want
to do this most.

I’m not sure because
my reasons conflict.

I’m only somewhat
sure in my decision
because I’ve only got
a few reasons. I
somewhat want to do
this most.

Why not do something else?
I thought about
turning left because
it would let us stay
away from that wall
and get close to our
target, but I felt
more strongly about
bearing right since
it lets us take a big
step and get around
this wall.

I thought about
shifting left a bit
because it would
let us get around
this wall, but I felt
much more strongly
about turning right
since it lets us go
somewhere familiar
and get close to our
target.

I decided not to
move far forward be-
cause the wall was in
the way.

I thought about
turning hard right
because it would let
us get close to our
target, but I felt
much more strongly
about bearing left
since it lets us go
somewhere famil-
iar, leave since our
target isn’t here, go
somewhere new, and
get around this wall.

Table 20: Explanations for the robot’s states and any current spatial model, enlarged
from Figure 12

arrow show the robot’s pose. Decision 1 was made when the robot had not yet learned

any spatial affordances; decision 2 was made later, when the spatial model was more

mature. In decision 3, the Advisors strongly disagreed, while in decision 4 the spatial

model-based Advisors disagreed with a commonsense-based Advisor.
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Figure 13: Situated-SemaFORR’s architecture with Why. Proposed work introduced
in this section is indicated in uppercase.

Why-Plan was also implemented as a package in ROS and evaluated in simu-

luation with MengeROS for a real-world robot (Fetch Robotics’ Freight). The robot

navigated to 40 destinations in a complex, 60m⇥90m office world (The Graduate

Center’s Fourth Floor). Why-Plan produced explanations in real time (µ = 4.9

ms, � = 2.5 ms, n = 3327) while the robot traveled. Why-Plan’s speed allows it

to compute an explanation for each state, which it provides only when asked. Fur-

ther inspection of the simulated results indicates that Why-Plan’s other natural

explanations for SemaFORR’s plans are similarly intelligible and transparent.

Why will be a separate ROS package that analyzes Situated-SemaFORR’s out-

puts to provide explanations seamlessly. Figure 13 shows Situated-SemaFORR’s ar-

chitecture with Why incorporated. After Situated-SemaFORR selects an action, it
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will send that action and its knowledge store to Why to produce a natural explana-

tion. The next section discusses how Situated-SemaFORR will be evaluated.

4.2 Evaluation

Situated-SemaFORR will be evaluated with respect to two criteria: navigation per-

formance and impact on people. Navigation performance will be measured by com-

putation time, travel time, and path length. Impact on people will be evaluated by

human subjects on several factors, including comfort, trust, understandability, and

interpretability. This section reviews potential approaches for both criteria. An exist-

ing IRB #2015-0933 titled “Learning to perform consistently in human/multi-robot

teams” will be amended to include the human-subject studies discussed here.

4.2.1 Navigation performance

A significant issue in collaborative navigation is that it lacks a standard testbed and

standard performance metrics. This makes it difficult to compare results from differ-

ent systems, especially when they make different assumptions about the environment.

While path cost, computation time, and algorithmic complexity are appropriate per-

formance metrics for path planning, no one metric is consistently used in the robot

navigation literature, and none of them is adequate to evaluate performance during

collaborative navigation. Without consistent and rigorous comparisons, however, it

is difficult to determine which approach is superior.

To contend with these issues, the navigation performance of Situated-SemaFORR

will be measured with several criteria and will be compared against ablated versions

of the system. Computation time will measure the average time it takes to select

an action and produce a plan. Since Why will be implemented as a separate ROS

package, it will be run in parallel with Situated-SemaFORR and its computation time

101



will be evaluated separately. Travel time will be measured as the total wall-clock time

required for the robot to travel from an initial state to its target. Path length will be

measured by the total distance travelled by the robot. Other possible metrics could

measure how well Situated-SemaFORR does on the robot’s planning objectives.

Navigation performance will be measured in simulated experiments with MengeROS

on a variety of unique and challenging real-world environments. Each experiment will

include multiple runs, each with multiple tasks. The results will be evaluated with

a statistical analysis to look for significant differences among the ablated versions.

Since Situated-SemaFORR can be run alongside another robot controller, computa-

tion time will need to be fast enough to ensure a decision cycle and learning do not

lag behind the other robot controller. Alternatively, Situated-SemaFORR could do

its learning in batches. Both cases will be evaluated.

4.2.2 Impact on people

Situated-SemaFORR will also be evaluated with human-subject studies to assess its

impact on people. There are two possible ways to do so. One is to run a simulation

experiment. In a within-subjects design, a subject would be shown two robot navi-

gators, one controlled by Situated-SemaFORR and another controlled by an ablated

version. The subject would then be asked about their preference between the two

approaches. A between-subjects design would split subjects into groups and show

each group a different condition. Subjects’ perceptions of comfort, predictability,

safety, friendliness, naturalness, and sociability of the robot would be measured on a

Likert scale. Statistical analysis would then test for significant difference in subjects’

ratings. Subjects could also be asked to describe their interpretation of the robot’s

decision-making rationales in natural language as another way to evaluate how accu-

rately they can identify Situated-SemaFORR’s underlying methods. Subjects will be
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recruited from an online crowd-sourcing platform, such as Amazon Mechanical Turk.

The number of subjects will be determined with a power analysis.

A second human-subject approach would have the subject follow the robot as

it navigates in a controlled environment to a shared destination. After that trip, a

subject would be evaluated with the same metrics used in the simulated experiment.

The conditions that a subject would experience would vary, based on the robot’s

controller (Situated-SemaFORR or an ablated version of it) and whether a within-

or between-subjects design is used. Subjects would be recruited with a stratified

random sampling procedure from the Hunter and CUNY communities. Stratified

random sampling is used because it allows researchers to ensure equal distribution

of demographics among individuals in each treatment group. Advertising on social

media, in classes, and with flyers could be used to reach a wide audience. Participants

could be compensated for their time to incentivize participation in the study.

Subjects for the in-person study would also be evaluated with the Santa Bar-

bara Sense of Direction (SBSOD) questionnaire, a self-report measure of individual’s

spatial abilities (Hegarty et al., 2002). This measure would help to determine if a

subject’s spatial ability has an impact on her perception of the robot’s navigation be-

havior. Subjects could also be asked to take the Negative Attitudes Towards Robots

Scale (NATRS), a standardized questionnaire that has been used in the literature

to evaluate people’s perceptions of robots (Nomura et al., 2008), since a subject’s

negative perceptions of robots may influence her comfort with the robot during the

experiment.

A subject in the physical interaction study will follow a strict experimental pro-

cedure. When a subject first arrives, she will complete a consent form and read

instructions that outline the procedure for the experiment. Next, she will complete a

pre-treatment questionnaire to establish her baseline navigation skill levels with SB-
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SOD and perception of robots with NATRS. Afterward, she will be led blindfolded

to the location of the experiment to prevent her from learning anything about the

environment before she begins the treatment condition. Then, the blindfold will be

removed and the subject will be asked to travel to three rooms identified by num-

ber in the indoor Hunter College environment. She will receive one room number at

a time and will travel to the next one after arrival at the currently assigned room.

These initial three locations will be without the presence of the robot to get a baseline

measure of navigation performance. A time cutoff will be used to limit the length of

the experiment in case the subject is unable to find a room in a reasonable amount

of time.

After this baseline period, each subject will follow the robot as it navigates to 10

locations but now under a randomly assigned treatment condition (some version of

Situated-SemaFORR). Ten locations will be used to control for any outliers (e.g., if

one task takes much longer than the rest). Finally, after the 10 locations are visited,

the subject will complete a post-treatment questionnaire to evaluate attitudes toward

the robot, and perceptions of the robot’s behavior. A random subset of the subjects

will be asked to participate in an exit interview to get a more in-depth understanding

of their perceptions, opinions, and navigation strategies.

Neither human-subject study described above would provide explanations of the

robot’s behavior; they merely evaluate the robot’s behavior. Separate human-subject

experiments will evaluate Why. First a preliminary study will refine Why’s natural

explanations. Because SemaFORR’s spatial model is approximate and its Advisors

are heuristic, precise natural language interpretations for numeric values are ad hoc.

For Tables 14, 15, and 16, thousands of decisions were inspected, and then their com-

puted values were partitioned as appeared appropriate. Both intervals and phrasing

will be fine-tuned with empirical assessment by native English speakers through an
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online crowd-sourcing platform. Variations of Why’s responses, based on different

templates and intervals, will be presented to subjects, and their preferences evaluated.

Each subject will indicate how natural, readable, understandable, and human-like

each explanation is. These measures will then be used to determine Why’s parame-

ters.

After this initial study, a follow-up study will evaluate Why’s impact on people’s

comfort with and understanding of the robot. Subjects, recruited through an online

crowd-sourcing platform, will watch the robot autonomously navigate to 5 target

locations in a small, office-like virtual environment. After decisions made by the

robot, the subject will be asked to what extent she understands the robot’s action,

and whether she wants an explanation for it. If so, she will receive explanations from

Why, and will be asked about the understandability, naturalness, and level of detail

of the explanation. There will also be an exit survey on demographics, preferences

for explanations, and general attitude toward robots. The results of the study would

be used to determine when people would like an explanation from the robot as it

navigates and how its explanations affect comfort and trust in the robot.

This section discussed methods to evaluate Situated-SemaFORR’s navigation per-

formance and its impact on people. Navigation performance will be measured with

simulation experiments against ablated version of the system. Human subject stud-

ies will measure how Situated-SemaFORR affects people’s comfort with and trust in

the robot, as well as their understanding of the robot’s behavior. The next chapter

summarizes the potential contributions from Situated-SemaFORR.
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5. Conclusion

Collaborative navigation is an important challenge in human-robot interaction, one

that must be addressed as robots are increasingly integrated into human society.

Robot navigators that travel alongside a person will need to achieve their own objec-

tives and also ensure the comfort of their companion. The thesis of this proposal is

that a robot navigator will do both when it incorporates situated cognition and mean-

ingful semantics. Situated-SemaFORR addresses this thesis; it will learn situations

and situated-decision strategies, and then explain its reasoning in natural language.

This chapter summarizes the potential contributions and broader implications of the

proposed work.

Chapter 3 introduced two major components of Situated-SemaFORR: situations

and situated-decision strategies. Situations group a robot’s experiences into poten-

tially useful clusters. Each learned situation has an exemplar, a paradigmatic rep-

resentation. Once a situation is learned, a situated-decision strategy identifies the

best action or plan to take in that situation. These situated-decision strategies will

incorporate new tier-3 Advisors that draw from the related work in Chapter 2, new

A*-based planners, and a new tier-2 voting mechanism. Chapter 3 also proposed a

novel metaheuristic, SARPA, as an alternative to A* search.

The potential contributions from the proposed work in Chapter 3 include a new

approach to generalize a robot’s experiences with situations and a novel way to spe-

cialize a robot’s behavior to its circumstances with situated-decision strategies. This

approach is potentially applicable much more broadly, to any real-world task with a

robot. It would allow a robot to learn strategies that apply to different parts of its

problem space. Another contribution is the use of a voting method for multi-objective

path planning. This approach is more feasible than other multi-objective planners
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because it does not contend with multi-objective optimization. Another major contri-

bution could be SARPA, a metaheuristic that draws from human behavior to search

a space. This cognitively-based metaheuristic may support clearer explanation of a

search algorithm’s methodology to a human companion.

Chapter 4 discussed approaches to explain Situated-SemaFORR’s decision-making

rationales in human-friendly natural language. It uses Why-Decision to explain

reactive navigation decisions and Why-Plan to explain navigation plans. These two

methods will be combined as Why to provide comprehensive explanations, including

situations and their associated situated-decision strategies.

Why is potentially applicable more broadly than indicated thus far. Any robot

controller could have Situated-SemaFORR learn the spatial model (described and

extended in Chapter 3) in parallel, and use it with Why to produce transparent,

cognitively-plausible explanations. If the alternative controller were to select action

a0 when Situated-SemaFORR selected a, Why could still explain a0 with any Advisors

that supported it, and offer an explanation for a as well. Furthermore, once equipped

with Advisor phrases and possibly with new interval mappings, any FORR-based

system could use Why to produce explanations. For example, Hoyle is a FORR-based

system that learns to play many two-person finite-board games expertly (Epstein,

2001). For Hoyle, Why could explain “Although I don’t want to make a move that

once led to a loss, I decided to do it because I really want to get closer to winning

and I want to do something I’ve seen an expert do.”

Why could be incorporated into a more general dialogue system that would fa-

cilitate part of a broader conversation between a human collaborator and a robot. A

preliminary FORR-based system for human-computer dialogue, could prove helpful

here (Epstein et al., 2011). Why presumes that questions arise from a difference

between the human’s and the robot’s objectives, but they could also stem from a
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violation of the shared knowledge assumption between the robot and the person. A

broader system for human-robot collaboration would seek the cause of such a mis-

match, use explanations to resolve it, and then adjust the robot’s responses based

on feedback from its human partner. Why could also use known planning objectives

to detect a more complex human objective. For example, given a plan P from a

person or an unknown heuristic planner, Why could use the individual objectives

in its repertoire to tease apart and then characterize how P weighted its objectives

(e.g., “You appear to consider distance twice as important as travel time.”). Why

could also address violations of assumptions made during planning (e.g., now-blocked

passageways or currently empty areas that are typically crowded).

Chapter 4 also described methods to evaluate Situated-SemaFORR. It proposed

simulation experiments to measure improvements in navigation performance, and dis-

cussed two potential human-subject studies. One study uses a simulated environment

to measure possible improvements in the naturalness of the robot’s behavior and peo-

ple’s comfort with the robot. The other examines people’s perceptions and reactions

in a real-world physical interaction with a robot navigator. These experiments would

validate Situated-SemaFORR’s proposed contributions and would provide a basis for

further research.

In conclusion, this paper has proposed Situated-SemaFORR, a cognitively-based,

explainable, and robust system for collaborative navigation. This work draws from

artificial intelligence, robotics, human-robot interaction, cognitive science, and ma-

chine learning to address the challenges of collaborative navigation in a way that

ensures people’s comfort and allows the robot to achieve its goals. The potential con-

tributions will have broad implications for both HRI and robotics, and are expected

to generate further interest in collaborative navigation.
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Glossary of Notation

Definitions

P A robot navigation problem where P = hS, I, A,Gi
A A set of possible actions from which the robot can select

a An action a 2 A is intended to change the robot’s pose

G(s) A Boolean goal test that returns true if the robot’s current location is a target

H The search space for a navigation problem P is the set of all paths that start
at an initial state

I A set of initial states, I ✓ S

o An optimal solution is a solution in the search space with minimum path cost:
o = argmin

p2H
PathCost(p)

P A plan is a path that can be proved to be a solution before it is executed

p A path is a finite ordered sequence of interleaved states and actions

S A set of states that represent an instance of the environment

s A state s = hx, y, ✓i 2 S

sk A goal state (a target with any pose) where G(sk) = True

t A target location t = hx, yi
y The length of a path p

SemaFORR

" The minimum distance from the target for the robot to be considered to have
reached the target

"aw The distance from an obstacle that AvoidWalls will not allow the robot to
move within

cia The comment strength of tier-3 Advisor i on action a, cia 2 [0, 10]

d A decision state records the robot’s current sensor data and its pose when it
makes a decision

i Tier-3 Advisor i 2 n
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n The number of tier-3 Advisors

SARPA

Best The complete plan with best quality among all searchers in SARPA

PA The complete plan with best quality among all searchers in the hasty team

PD The complete plan with best quality among all searchers in the dog team

PG The complete plan with best quality among all searchers in the grid team

PH The complete plan with best quality among all searchers in the helicopter team

Situations

⌘ The minimum length of dynamic situation sequences

◆ An observed situated state ◆ 2 g

b The number of learned situations, {U1, U2, . . . , Ub} ✓ O

C A condition groups situations based on their similarity, C = {e1, e2, . . . , eq}
D A dynamic situation represents dynamic events and patterns across time as a

sequence of exemplars in chronological order, D = he1, e2, . . . , eli
e An exemplar that represents a situation U

fj A feature that is part of a vector representation for a situated state, fj 2
hf1, f2, . . . , fmi

g The number of observed situated states in O

h A situation h 2 b

j A feature j 2 m

l The number of situations in a dynamic situation

m The number of features in a vector representation for a situated state

O A set of observed situated states, O = {x1, x2, . . . , xg}, where O ✓ X

q The number of situations in a condition

r A spatial relation that consists of a list of features and the geometric relation
among those features

U A situation U ✓ X is a subset of similar situated states
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X A set of situated states that represent an instance of the environment

x A situated state x 2 X includes the robot’s pose, sensor data, and additional
features, such as a robot’s characteristics, its accessible external information,
its learned internal knowledge, its tasks and objectives, and its knowledge
about its environment

z The number of spatial relations

Situated-Decision Strategies

↵hi A weight ↵hi 2 [0,1] based on some criterion assigned to a tier-3 Advisor for a
situation Uh

c̄i The mean of Advisor i’s comment strengths

� The “best” action � 2 A for a situation

� A situated-decision strategy selects an action a for a given situation U or a
plan P for a given dynamic situation D that advances the robot toward task
completion

� The maximal distance to the nearest line segment to prevent a line segment
from being pruned in the hallway learning algorithm

O A path planning objective, such as “minimize distance traveled” or “avoid
crowds”

⌫ The number of sensor endpoints from a rangefinder

! The minimal number of nearby line segments to prevent a line segment from
being pruned in the hallway learning algorithm

⇧ The number of tier-2 objectives

⇡ An objective for a tier-2 planner ⇡ 2 ⇧
 A set of possible plans from which the robot can select

⇢ia A tier-3 Advisor’s relative support for an action a is ⇢ia = (cia� c̄i)/�i where c̄i
is the mean of Advisor i’s comment strengths and �i is their standard deviation

�i The standard deviation of Advisor i’s comment strengths

⇥⇡(P ) The score objective ⇡ assigns to plan P

"barrier The maximal distance between adjacent line segments for them to be merged
in the barrier learning algorithm
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"door The maximal distance between two exits to create a door or add to an existing
door

"slope The maximal difference between adjacent line segments’ slopes for them to be
merged in the barrier learning algorithm

⇠ The number of learned barriers

f(s) The estimated total cost of a partial plan up to node s, f(s) = g(s) + h(s)

g(s) The total of the edge costs from the start node to a node s

h(s) A heuristic that estimates the cost from a node s to the target’s node t

Why

� The difference between two plan’s measures under O
�a The level of agreement among n tier-3 Advisors computed with Gini impurity

 A natural language descriptor for an objective

⇤a The confidence level that weighs level of agreement �a and overall support ⇣a
equally

C The total comment strength C for an action across all tier-3 Advisors

OM The robot’s assumption of a human’s path planning objective

OR The robot’s path planning objective

µC The mean total strength C of all actions under consideration by tier 3

�C The standard deviation of the total strength C of all actions under consideration
by tier 3

⇣a The overall support among n tier-3 Advisors computed as a t-statistic across
all tier-3 comments

M(P ) A function that measures OM for a plan P

nl A descriptive natural language phrase assigned to �

PM The robot’s approximation of the human’s implicit plan based on OM

PR The robot’s plan based on OR

R(P ) A function that measures OR for a plan P
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