Deep Learning with Neural Networks
The Structure and Optimization of Deep Neural Networks

Allan Zelener
Machine Learning Reading Group
January 7th 2016
The Graduate Center, CUNY
Objectives

• Explain some of the trends of deep learning and neural networks in machine learning research.
• Give a theoretical and practical understanding of neural network structure and training.
• Provide baseline for reading neural network papers in machine learning and related fields.
• Brief look at some major work that could be used in further reading group discussions.
Why are neural networks back again?

• State-of-the-art performance on benchmark perception datasets.
 • TIMIT – (Mohamed, Dahl, Hinton 2009)
 • 23.0% phoneme error rate vs 24.4% ensemble method.
 • 17.7% with LSTM RNN (Graves, Mohamed, Hinton 2013)
 • Imagenet – (Krizhevsky, Sutskever, Hinton 2012)
 • 16% top-5 error vs 25% of competing methods.
 • In 2015 deep nets can achieve ~3.5% top-5 error.

• Larger datasets and faster computation.
 • Good enough that industry is now investing resources.

• A few innovations: ReLU, Dropout.
Why should neural networks work?

• No strong and useful theoretical guarantees yet.

• Universal approximation theorems
 • Taylor’s theorem (differentiable functions)
 • Stone-Weierstrass theorem (continuous functions)
 • \(F(x) = \sum_{i=1}^{N} v_i \phi(w_i^T x + b_i), \ |F(x) - f(x)| < \epsilon \)
 • \(F(x) \) is a piecewise constant approximation of \(f(x) \).
 • The neural network unit \(\phi(w_i^T x + b_i) \) should be 1 if \(f(x) \approx v_i \) and 0 otherwise.

• Optimization of neural networks
 • “Many equally good local minimum” for simplified ideal models.
 • Saddle point problem in non-convex optimization. (Dauphin et al. 2014)
 • Loss surface of multilayer neural networks. (Choromanska et al. 2015)
Why go deeper?

• Deep Neural Networks
 • Universal approximation theorem is for single layer networks.
 • For complicated functions we may need very large N.
 • Empirically, deep networks learn better representations than shallow networks using fewer parameters.
 • For applications where data is highly structured, e.g. vision, facilitates composition of features, feature sharing, and distributed representation.
 • Caveat: Deep nets can be compressed. (Ba and Caruana 2014)
Why go deeper?

• Deep Learning for Representation Learning
 • Classic pipeline
 • Raw Measurements \rightarrow Features \rightarrow Prediction.
 • Replace human heuristic feature engineering with learned representations.
 • New pipeline
 • Raw Measurements \rightarrow Prediction. (Representation is inside the \rightarrow)
 • End-to-end optimization, but not necessarily a neural network.
 • Caveat: Replaces feature engineering with pipeline engineering.

• Deep Learning as composition of classical models
 • Feed-forward neutral network \equiv Recursive generalized linear model.
Why neural?

• Loosely biologically inspired architecture.
 • LeNet CNN inspired by cat and monkey visual cortex. (Hubel and Wisel 1968)
 • Real neurons respond to simple structures like edges.

• Probably not actually a good model for how brains work, although there may be some similarities.

• Pitfall: Mistaking neural networks for neuroscience.

• I will try to avoid neural inspired jargon where possible but it has become standard in the field.
The Architecture

• In machine learning we want to find good approximations to interesting functions \(f: X \rightarrow Y \) that describe mappings from observations to useful predictions.

• The approximation function should be:
 • Computationally tractable
 • Nonlinear (if \(f \) is nonlinear of course)
 • Parameterizable (so we can learn parameters given training data)
The Architecture - Tractable

• Step 1: Start with a linear function.
 • $y = w^T x + b$ – Linear unit.
 • $y = Wx + b$ – Linear layer.

• Efficient to compute, optimized and stable. BLAS libraries and GPUs.
 • $Y = WX + b$ – Linear layer with batch input.

• Easily differentiable, and thus optimizable.
 • $\frac{dy}{dw} = x, \frac{dy}{db} = 1$

• Many parameters, $O(nm)$ for n input dim and m outputs.
The Architecture - Nonlinear

• Step 2: Add a non-linearity.
 • \(y = \phi(Wx + b) \)
 • \(\phi(\cdot) \) is some nonlinear function, historically sigmoid.
 • Logistic function \(\sigma: \mathbb{R} \rightarrow (0,1) \)
 • Hyperbolic tangent \(\tanh: \mathbb{R} \rightarrow (-1,1) \)
 • ReLU (Rectified Linear Unit) is a popular choice now.
 • ReLU\((x) = \max(0, x)\)
 • Computationally efficient and surprisingly just works.
 • \(\frac{d \text{ReLU}}{dx} \approx \begin{cases} 1, & x > 0 \\ 0, & x \leq 0 \end{cases} \)
 • Note: ReLU is not differentiable at \(x = 0 \), but we take 0 for the subgradient.
The Architecture – Parameterizable

• Step 3: Repeat until deep.

\[
x \rightarrow W_0x + b_0 \rightarrow h_1 \rightarrow W_1h_1 + b_1 \rightarrow h_2 \rightarrow ... \rightarrow W_kh_k + b_k \rightarrow h_{k+1}
\]

• Multilayer Perceptron
• Parameters for linear functions, but entire network is nonlinear.
• Each \(h_i \) is called an activation. Internal layers are called hidden.
• Final activation can be used as linear regression.
• Differentiable using backpropagation.
The Architecture

Orders of Magnitude

State of the Art Object Recognition Models:

15-25 layers
10-200M parameters
1-5B multiply-adds / image

• (From Vincent Vanhoucke’s slides.)
The Architecture – Classification

• Softmax regression (aka multinomial logistic regression)

\[a(x) = \text{softmax}(\text{evidence}) = \text{normalize}(e^x) = \frac{e^x}{\|e^x\|_1} \]

• \[a_i = \frac{e^{x_i}}{\sum_{j=1}^{K} e^{x_j}} = p(\bar{y} = i \mid x) \text{ where class}(x) = \bar{y} \]

• Exponentiate \(x \) to exaggerate differences between features.

• Normalize so \(a \) is a probability distribution over \(K \) classes.

• Softmax is a differentiable approximation to the indicator function.

• \[1_{\text{class}(x)}(k) = \begin{cases} 1 & k = \text{arg max}(x_1, \ldots, x_K) = \text{class}(x) \\ 0 & \text{otherwise} \end{cases} \]
The Architecture - Objective

• How far away is the network?
• Let $y = \text{nn}(x, w)$ be the network’s prediction on x.
• Let \bar{y} be the “ground truth” target for x.
• Let $L(\bar{y}, y)$ be the loss for our prediction on x.
 • If $y = \bar{y}$ then this should be 0.
 • Squared Euclidean distance/L_2 loss: $\|\bar{y} - y\|_2^2$
 • Cross-entropy/negative log likelihood loss: $-\sum \bar{y} \log y$
• The objective function is $\sum L(y, \bar{y})$ over training pairs (x, \bar{y}).
Learning Algorithm for Neural Networks

• Training is the process of minimizing the objective function with respect to the weight parameters.

\[\mathbf{w}^* = \arg \min_{\mathbf{w}} J(\mathbf{w}) = \arg \min_{\mathbf{w}} \sum_{(x,y) \in T} L(\mathbf{y}, \text{nn}(x, \mathbf{w})) \]

• This optimization is done by iterative steps of gradient descent.

\[\mathbf{w}^{(t+1)} = \mathbf{w}^{(t)} - \eta \nabla J(\mathbf{w}^{(t)}) \]

• \(\nabla J(\mathbf{w}) \) is the gradient direction.

• \(\eta \) is the learning rate/step size.

 • Needs to be “small enough” for convergence.
Learning Algorithm for Neural Networks

• $J(w)$ is highly non-linear and non-convex, but it is differentiable.
• The backpropagation algorithm applies the chain rule for derivation backwards through the network.

$$\frac{\partial f_1 \circ f_2 \circ \cdots \circ f_n}{\partial x} = \frac{\partial f_1}{\partial f_2} \cdot \frac{\partial f_2}{\partial f_3} \cdot \cdots \cdot \frac{\partial f_n}{\partial x}$$
Backpropagation Example

- Let $a(\cdot) = \text{softmax}(\cdot)$
 - $\frac{\partial J}{\partial a_i} = - \sum_k \frac{\bar{y}_k}{y_k} \frac{\partial a_k}{\partial h_i}$
 - $\frac{\partial a_i}{\partial h_i} = a_i(1 - a_i)$, $\frac{\partial a_i}{\partial h_j} = -a_i a_j$ for $i \neq j$
 - $\frac{\partial h_i}{\partial w_i} = 1_{h_i > 0} \cdot x$, $\frac{\partial h_i}{\partial b_i} = 1_{h_i > 0}$

Homework:
Prove $\frac{\partial J}{\partial h_i} = a_i - \bar{y}_i$ and verify softmax derivatives.
Backpropagation Example

\[
\frac{\partial J}{\partial W_i} = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\delta \text{ReLU}_i} \frac{\delta \text{ReLU}_i}{\partial \text{Linear}_i} \frac{\partial \text{Linear}_i}{\partial W_i} = (a_i - \bar{y}_i) \mathbf{1}_{h_i > 0} \cdot x
\]

\[
\frac{\partial J}{\partial b_i} = \frac{\partial J}{\partial h_i} \frac{\partial h_i}{\delta \text{ReLU}_i} \frac{\delta \text{ReLU}_i}{\partial \text{Linear}_i} \frac{\partial \text{Linear}_i}{\partial b_i} = (a_i - \bar{y}_i) \mathbf{1}_{h_i > 0} \cdot 1
\]

- Homework: Work out backprop with two linear layers and a batch of inputs \(X\).
The Data is Too Damn Big

• The objective function for gradient descent requires summing over the entire training set: $J(w) = \sum_{(x,\bar{y}) \in T} L(\bar{y}, \text{nn}(x, w))$.

• This is too costly for big datasets, we need to approximate.

• Stochastic Gradient Descent uses small batches of the training set. $J(w) \approx \sum_{(x,\bar{y}) \in B \subset T} L(\bar{y}, \text{nn}(x, w))$.

 • After every batch is used, one epoch, training data is randomly permuted.
 • Poor estimates but repeated many times and smoothed.
 • Online (batch size = 1) might be great if we didn’t lose low-level efficiency of batching several examples for matrix multiplications, e.g. $H = WX$.
SGD Tricks

• Momentum

\[
g^{(t+1)} = \mu g^{(t)} + \nabla J(w^{(t)})
\]

\[
w^{(t+1)} = w^{(t)} - \eta g^{(t+1)}
\]

• Typically large \(\mu\), e.g. \(\mu = 0.9\).

• Assume we’re going the right way over time.

• Reduce impact of noisy estimates.
SGD Tricks

• Learning Rate Decay
 \[\eta = \eta_0 e^{-\beta t} \] - Exponentially decaying learning rate.
• Loss surface can have structures at varying scales.
• Anneal learning rate to explore various scales.
SGD Tricks

• AdaGrad (Duchi, Hazan, Singer 2011)
• Adaptive per-parameter learning rate decay.
• Keep history of squared L2 norm for each parameter w.
• $h^{(t+1)} = h^{(t)} + \nabla J^2(w^{(t)})$
• $w^{(t+1)} = w^{(t)} - \frac{\eta}{\sqrt{h^{(t+1)}}} \nabla J(w^{(t)})$
• Intuitively, update less if there have been many changes and update more if there have been few changes.
SGD Tricks

• Averaged SGD - Parameter averaging
 \[\hat{w}(t) = \frac{1}{t-t_0} \sum_{i=t_0+1}^{t} w(i) = \hat{w}(t-1) + \frac{1}{t-t_0} (w(t) - \hat{w}(t-1)) \]

• Smooth fluxuation in the model over time.
• SGD may be biased to most recent batches.
• Like an ensemble of models through time.
• Can be computed without storing all parameters over time.
• Note: Use average parameters only at test time, not training.
 • Why?
SGD Tricks

• Gradient Clipping

• If $\|\nabla J(w^{(t)})\| > \theta$ then $w^{(t+1)} = w^{(t)} - \frac{\eta \theta}{\|\nabla J(w^{(t)})\|} \nabla J(w^{(t)})$

• Prevent big jumps from exploding gradients.
SGD Tricks

• Other popular variants on SGD update:
 • Nesterov Accelerated Gradient
 • Adadelta
 • RMSprop
 • ADAM

• Visual comparison of some of these methods:
 • http://imgur.com/a/Hqolp

• Second-order alternatives to SGD
 • Conjugate Gradient, L-BFGS
Initialization

• Weight initialization
• Weights need to be numerically stable.
 • Saturation: Units stuck outputting extremal values.
 • Exploding and shrinking gradients.
 • Uncentered input can make gradients always positive or negative.
 • Units with identical weights produce same results, break symmetries.
 • Keep norm of weights throughout network roughly equal.

• Initialize $w \sim \mathcal{N}(0, \sigma)$. Set σ based on $\text{dim}(\mathbf{x})^{-\frac{1}{2}}$ (for sigmoid).
• Initialize b as small positive values so ReLU will be nonzero.
Initialization

• Weights at the Loss Layer

• $\mathcal{L} = -\sum \bar{y} \log y$
 - $\|y\|$ is “peakiness” or “temperature” of predicted probability distribution.
 - Determines magnitude of gradients backpropagated.
 - Bigger peaks = big errors = bigger gradients.
 - Initialize with small weights, small peak distribution.
 - Anneals to more peaky distribution as classifier gets more confident.

![Graph showing high temperature, low peakiness vs. low temperature, high peakiness](image)
The Most Important Training Tip

• Lower your learning rate by 10x and try again.
 • 0.1 is often a recommended default.
 • Going down to 0.0001 or lower may be needed sometimes.
 • Faster learning rate ≠ better training.
Regularization

• Underfitting
 • The model does not have enough parameters to represent the complexity of the target function.

• Overfitting
 • The model has too many degrees of freedom and tries to represent every little detail in the training data.
 • Poor performance on heldout dataset relative to training set.

• Solution: Take the biggest model we can train but nudge the parameters to generalize better.
Regularization

- L2 Norm Regularization
- Penalize large weights by augmenting loss function.
- Large weights describe extreme examples on the decision boundary.
- \(\mathcal{L}(x, \bar{y}; w) = L(\bar{y}, \text{nn}(x, w)) + \frac{\lambda}{2} \| w \|_2^2 \)
- Hyperparameter \(\lambda \) controls contribution of regularization.
Regularization

- Dropout
- Probability $p(= 0.5)$ to set output of a unit to 0 during training.
- At test time multiply each output by p.
- Force other units to learn redundant representations.
- Prevent units from relying on input from other specific units.
- Approximates an ensemble method using one network.
 - Each redundant path is like a weak classifier.
 - Multiplying by p like taking geometric mean.
Starting Out on a New Problem

• First try logistic regression, random forests, or gradient boosting.
 • Good performance with fewer hyperparameters.
• Try feasibility of data/problem on simple models and a small dataset.
• For a neural net starting with 2-3 layers with 128 – 1024 units per layer is reasonable, then scale up as needed.
 • Very recent work on transferring parameters to wider and deeper nets:
 • Net2Net: Accelerating Learning via Knowledge Transfer *(Chen, Goodfellow, Shlens 2015)*
Common Variations

• Convolutional Neural Networks
 • Spatially tied (reused) weights for imagery.

• Recurrent Neural Networks
 • Temporally tied weights for recurrent connections and sequences.
 • May be stateful, next output depends on previous inputs.

• Embeddings
 • Find semantic preserving learned representation.
 • Simple math operations in feature space have semantic properties.

• Generative Models
 • Learn $p(x, y)$ or $p(x|y)$ instead of just $p(y|x)$.
Convolution/Cross-Correlation

- Convolution: \((f \ast g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau)d\tau\)
- Can be thought of as a sliding dot product.
- Overlap of two functions as they slide across each other.
- Many applications and interpretations exist.
Convolutional Neural Networks

- High dimensional \mathbf{x}, but similar structure.
- Balloons can occur in many places in an image.
- Replace $W\mathbf{x}$ with $W' * \mathbf{x}$ where W' is much smaller than W.
A Note on Tensors (Multidimensional Arrays)

• For many types of input (images, video, etc.) it’s helpful to think of your data as a tensor rather than a feature vector.
• Each layer of a network transforms one tensor into another.
• Convolution uses assumptions on original tensor structure and roughly preserves it, e.g. image dimensions.
• But mostly still just doing dot products with tensor components.
 • Other operations are possible.
 • See Recursive Neural Tensor Networks (Socher et al. 2013)
Convolutional Layer Example

• If x is a 320x240x3 RGB image and we want a single output per pixel, then W is 240,400 x 76,800. If we convolve with a 5x5 filter then W' is 75 x 1 and is applied 76,800 times.

• ~18 billion add/mul operations vs ~5 million. 3200 times more.

• Fewer parameters, fewer operations, models stationarity in space.

• Often used with pooling for further reduction and spatial invariance.
Recurrent Neural Networks

- Allow a layer to take input from itself.
- Input can also vary, e.g. a sequence x_1, x_2, \ldots, x_n.
- In practice, approximated by discrete number of time steps.
- Can simply backpropagate through unrolled time steps.
- Reuse weights at each time step.

$$s_t = [U \mid W] \begin{bmatrix} x_t \\ s_{t-1} \end{bmatrix}$$
LSTMs (Long Short-Term Memory)

- LSTMs are a type of RNN that work well in practice.
- Conceptually adds “memory” cell C that can be controlled over time.
- Three control “gates”: Input, Forget, Output.
- Each gate is a linear layer with sigmoid (0,1) nonlinearity.
 - Differentiable control so we can learn these parameters using backprop.
- Outputs s_t and C_t are a function of x_t, s_{t-1}, and C_{t-1}.
- Many variations exist, for a more detailed breakdown see Christopher Olah’s blog post on LSTMs.
LSTMs

• Each gate uses the current input x_t and previous output s_{t-1}.
• Input gate I controls use of RNN result on x_t and s_{t-1}.
• Forget gate F controls use of previous cell state C_{t-1}.
• Next cell state C_t is determined by RNN result, C_{t-1}, I and F.
• Output gate controls the next output s_t as given by C_t.
Embeddings and Generative Models

• In practice, unsupervised learning has had limited success compared to supervised learning despite the initial neural net revival being prompted by the generative model of (Mohamed, Dahl, Hinton 2009).

• However interesting research is ongoing and will hopefully be a topic of future ML Reading Group meetings!
Neural Network Libraries

• Torch (Lua)
• Caffe (Protobuf, Python, C++)
• Theano + Keras/Blocks/Lasagne (Python)
• Tensorflow (Python, C++)
• And more...
Further Reading

- Micheal Nielsen’s [Neural Networks and Deep Learning](http://deeplearning.net/) online textbook.
- [Course notes](http://deeplearning.net/) for Convolutional Neural Networks for Visual Recognition by Fei-Fei Li and Andrej Karpathy.
 - Winter 2016 class just began, now with videos!
- http://deeplearning.net/
- Reddit.com/r/MachineLearning
References

• Many slides based on Vincent Vanhoucke’s Large Scale Deep Learning slides presented at the Machine Learning Summer School 2015.
 • http://www.iip.ist.i.kyoto-u.ac.jp/mlss15
 • More on scaling up and parallelizing neural networks.

• Some derivations from Marc’Aurelio Ranzato’s deep learning tutorial from CVPR 2014.
 • More on ConvNets and tips on training.

• Geoff Hinton’s 2015 keynote at the Royal Society: Youtube
 • More on unsupervised nets and history of neural net research.