AlphaGo: Mastering the game of Go with neural networks and tree search

Presented by Allan Zelener
Machine Learning Reading Group at The Graduate Center, CUNY
March 11th 2016
The Key Ingredients

• Convolutional Neural Networks
 • What is the state of the game board?
 • Reduce complexity of the game state.

• Reinforcement Learning
 • What moves to make? How good is a move?
 • Policy and value.

• Monte Carlo Tree Search
 • What moves lead to victory?
 • Approximate optimal minimax game tree.

• Distributed Computation
 • Do it all big and fast.
• p_π and p_σ are trained to predict moves in human expert games, giving $p(a|s)$.
• The rollout policy is a small network used to quickly simulate entire games.
• p_ρ refines p_σ to predict winning moves in self-play simulation through reinforcement learning.
• v_θ predicts the probability of each player winning given a board state.

Input Features

Extended Data Table 2: Input features for neural networks

<table>
<thead>
<tr>
<th>Feature</th>
<th># of planes</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stone colour</td>
<td>3</td>
<td>Player stone / opponent stone / empty</td>
</tr>
<tr>
<td>Ones</td>
<td>1</td>
<td>A constant plane filled with 1</td>
</tr>
<tr>
<td>Turns since</td>
<td>8</td>
<td>How many turns since a move was played</td>
</tr>
<tr>
<td>Liberties</td>
<td>8</td>
<td>Number of liberties (empty adjacent points)</td>
</tr>
<tr>
<td>Capture size</td>
<td>8</td>
<td>How many opponent stones would be captured</td>
</tr>
<tr>
<td>Self-atari size</td>
<td>8</td>
<td>How many of own stones would be captured</td>
</tr>
<tr>
<td>Liberties after move</td>
<td>8</td>
<td>Number of liberties after this move is played</td>
</tr>
<tr>
<td>Ladder capture</td>
<td>1</td>
<td>Whether a move at this point is a successful ladder capture</td>
</tr>
<tr>
<td>Ladder escape</td>
<td>1</td>
<td>Whether a move at this point is a successful ladder escape</td>
</tr>
<tr>
<td>Sensibleness</td>
<td>1</td>
<td>Whether a move is legal and does not fill its own eyes</td>
</tr>
<tr>
<td>Zeros</td>
<td>1</td>
<td>A constant plane filled with 0</td>
</tr>
<tr>
<td>Player color</td>
<td>1</td>
<td>Whether current player is black</td>
</tr>
</tbody>
</table>

Feature planes used by the policy network (all but last feature) and value network (all features).
Input Features

Extended Data Table 4: Input features for rollout and tree policy

<table>
<thead>
<tr>
<th>Feature</th>
<th># of patterns</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Response</td>
<td>1</td>
<td>Whether move matches one or more response pattern features</td>
</tr>
<tr>
<td>Save atari</td>
<td>1</td>
<td>Move saves stone(s) from capture</td>
</tr>
<tr>
<td>Neighbour</td>
<td>8</td>
<td>Move is 8-connected to previous move</td>
</tr>
<tr>
<td>Nakade</td>
<td>8192</td>
<td>Move matches a nakade pattern at captured stone</td>
</tr>
<tr>
<td>Response pattern</td>
<td>32207</td>
<td>Move matches 12-point diamond pattern near previous move</td>
</tr>
<tr>
<td>Non-response pattern</td>
<td>69338</td>
<td>Move matches 3×3 pattern around move</td>
</tr>
<tr>
<td>Self-atari</td>
<td>1</td>
<td>Move allows stones to be captured</td>
</tr>
<tr>
<td>Last move distance</td>
<td>34</td>
<td>Manhattan distance to previous two moves</td>
</tr>
<tr>
<td>Non-response pattern</td>
<td>32207</td>
<td>Move matches 12-point diamond pattern centred around move</td>
</tr>
</tbody>
</table>

Features used by the rollout policy (first set) and tree policy (first and second set). Patterns are based on stone colour (black/white/empty) and liberties ($1, 2, \geq 3$) at each intersection of the pattern.
Strength and accuracy of policy and value networks

- a) Comparison of policy networks with varying number of convolutional filters versus the match ready version of AlphaGo.
- b) Comparison of value network and mean of 100 rollouts by various policies on predictions of outcomes on human expert games.

Reinforcement Learning

- Initialize p_ρ with p_σ, policy from human expert moves.
- Simulate game of $p_\rho^{(k)}$ with randomly selected $p_\rho^{k'}$, $k' < k$.
- Outcome at move $t, z_t = +1$ for winning and -1 for losing.
- SGD for each game move: $\Delta \rho \propto \frac{\partial \log p_\rho(a_t|s_t)}{\partial \rho} \cdot z_t$.
- 80% win rate versus p_σ.
- 85% win rate versus Pachi (previous best Go AI, search-based).
Reinforcement Learning

• $v^p(s) = \mathbb{E}[z_t \mid s_t = s, a_{t \ldots T} \sim p]$

• $v_\theta(s) \approx v^{p_\rho}(s) \approx v^*(s)$

• For state-outcome pairs (s, z), $\Delta \theta \propto \frac{\partial v_\theta(s)}{\partial \theta} \cdot (z - v_\theta(s))$

• Successive positions in the same game are too strongly correlated, leads to overfitting.

• Sample (s, z) from different games in the self-play simulations.

• Approaches accuracy of rollouts of p_ρ with 15,000x less computation.
Monte Carlo Tree Search

- Explore move and simulate to game conclusion.
- Balance exploration vs exploitation.
- Converges to optimal value function with infinite simulations.
• a) Traverse tree from root to leaf my selecting actions with \(\text{argmax}_a Q(s, a) + u(s, a) \), the action value plus a prior-based bonus \(u(s, a) \propto \frac{P(s, a)}{1 + N(s, a)} \), that decays with repeated visits.

• b) Expand leaf node and set prior \(P(s, a) = p_\sigma(a|s) \).
Monte Carlo tree search in AlphaGo

- c) Evaluate leaf node, $V(s_L) = (1 - \lambda)v_\theta(s_L) + \lambda z_L$ where z_L is the rollout outcome using p_π.

- d) Update Q along tree path to track mean action value.

$$N(s, a) = \sum_{i=1}^{n} 1(s, a, i), \quad Q(s, a) = \frac{1}{N(s, a)} \sum_{i=1}^{n} 1(s, a, i)V(s_L^i).$$
The Networks in AlphaGo MCTS

• Note that p_σ served as a better prior than p_ρ, presumably because humans consider a diverse beam of moves whereas RL optimizes for a single best move.

• However the value network derived from the RL policy network was better than the value network derived from the SL policy network.

• NNs are relatively expensive search heuristics for MCTS.

• Asynchronous multithreaded search:
 • 40 search threads, 48 CPUs, 8 GPUs.

• Distributed AlphaGo:
 • 40 search threads, 1202 CPUs, 176 GPUs.

• See the paper for more technical details.
Tournament evaluation of AlphaGo

- Each program used about 5s per move.
- Pale bar indicates games where a four stone handicap was given.
- Games against human European champion Fan Hui used longer time control.
- Elo rating: 100 point gap ~64% win rate, 200 point gap ~76% win rate.
How AlphaGo (black, to play) selected its move in an informal game against Fan Hui

a) $v_\theta(a|s)$
b) MCTS using only $v_\theta(s)$ ($\lambda = 0$)
c) MCTS using only $p_\pi(s)$ ($\lambda = 1$)
d) $p_\sigma(a|s) > 0.1\%$
e) % selections during MCTS
f) Most visited path is selected.

White square indicates Fan Hui’s move. In post-game commentary he preferred the move labeled 1 predicted by AlphaGo.

Comparison with Deep Blue

• AlphaGo evaluated thousands of times fewer positions in its matches against Fan Hui than Deep Blue against Garry Kasparov.

• Deep Blue used a handcrafted evaluation function while AlphaGo was trained directly from gameplay data.
 • Some AlphaGo features are still handcrafted, particularly for rollout.

• AlphaGo demonstrates a better capability of approximately solving a seemingly intractable problem using less brute-force effort.
AlphaGo vs Lee Se-dol

• AlphaGo is the first AI Go system to beat a human pro player.
• Fan Hui is the European champion and a 2 dan pro.
• Lee Se-dol has won 18 international titles and is a 9 dan pro.
• Based on Elo ratings, Lee would win 75% of games against Fan, and this may be an underestimate since 9 dan is the maximum rank.

• AlphaGo plays Lee Se-dol on March 9th, 10th, 12th, 13th, and 15th at 11:00pm ET. Matches are expected to take 4 - 5 hours.
• The winner will get a $1,000,000 prize.